Displaying all 19 publications

Abstract:
Sort:
  1. Vasudevan A, Majumder N, Sharma I, Kaur I, Sundarrajan S, Venugopal JR, et al.
    ACS Biomater Sci Eng, 2023 Nov 13;9(11):6357-6368.
    PMID: 37847169 DOI: 10.1021/acsbiomaterials.3c01216
    Immortalized liver cell lines and primary hepatocytes are currently used as in vitro models for hepatotoxic drug screening. However, a decline in the viability and functionality of hepatocytes with time is an important limitation of these culture models. Advancements in tissue engineering techniques have allowed us to overcome this challenge by designing suitable scaffolds for maintaining viable and functional primary hepatocytes for a longer period of time in culture. In the current study, we fabricated liver-specific nanofiber scaffolds with polylactic acid (PLA) along with a decellularized liver extracellular matrix (LEM) by the electrospinning technique. The fabricated hybrid PLA-LEM scaffolds were more hydrophilic and had better swelling properties than the PLA scaffolds. The hybrid scaffolds had a pore size of 38 ± 8 μm and supported primary rat hepatocyte cultures for 10 days. Increased viability (2-fold increase in the number of live cells) and functionality (5-fold increase in albumin secretion) were observed in primary hepatocytes cultured on the PLA-LEM scaffolds as compared to those on conventional collagen-coated plates on day 10 of culture. A significant increase in CYP1A2 enzyme activity was observed in hepatocytes cultured on PLA-LEM hybrid scaffolds in comparison to those on collagen upon induction with phenobarbital. Drugs like acetaminophen and rifampicin showed the highest toxicity in hepatocytes cultured on hybrid scaffolds. Also, the lethal dose of these drugs in rodents was accurately predicted as 1.6 g/kg and 594 mg/kg, respectively, from the corresponding IC50 values obtained from drug-treated hepatocytes on hybrid scaffolds. Thus, the fabricated liver-specific electrospun scaffolds maintained primary hepatocyte viability and functionality for an extended period in culture and served as an effective ex vivo drug screening platform to predict an accurate in vivo drug-induced hepatotoxicity.
    Matched MeSH terms: Hepatocytes/metabolism
  2. Lee KW, Tey BT, Ho KL, Tan WS
    J Appl Microbiol, 2012 Jan;112(1):119-31.
    PMID: 21992228 DOI: 10.1111/j.1365-2672.2011.05176.x
    To display a liver-specific ligand on the hepatitis B virus core particles for cell-targeting delivery.
    Matched MeSH terms: Hepatocytes/metabolism*
  3. Tarmalinggam Y, Prakash ES
    Adv Physiol Educ, 2007 Dec;31(4):370-1.
    PMID: 18057413
    Matched MeSH terms: Hepatocytes/metabolism*
  4. Oskoueian E, Abdullah N, Zulkifli I, Ebrahimi M, Karimi E, Goh YM, et al.
    BMC Complement Altern Med, 2015 Oct 30;15:392.
    PMID: 26518905 DOI: 10.1186/s12906-015-0921-z
    BACKGROUND: Palm kernel cake (PKC), a by-product of the palm oil industry is abundantly available in many tropical and subtropical countries. The product is known to contain high levels of phenolic compounds that may impede the deleterious effects of fungal mycotoxins. This study focused on the evaluation of PKC phenolics as a potential cytoprotective agent towards aflatoxin B1 (AFB1)-induced cell damage.

    METHODS: The phenolic compounds of PKC were obtained by solvent extraction and the product rich in phenolic compounds was labeled as phenolic-enriched fraction (PEF). This fraction was evaluated for its phenolic compounds composition. The antioxidant activity of PEF was determined by using 1,1-diphenyl-2-picryl-hydrazil scavenging activity, ferric reducing antioxidant power, inhibition of ß-carotene bleaching, and thiobarbituric acid reactive substances assays. The cytotoxicity assay and molecular biomarkers analyses were performed to evaluate the cytoprotective effects of PEF towards aflatoxin B1 (AFB1)-induced cell damage.

    RESULTS: The results showed that PEF contained gallic acid, pyrogallol, vanillic acid, caffeic acid, syringic acid, epicatechin, catechin and ferulic acid. The PEF exhibited free radical scavenging activity, ferric reducing antioxidant power, ß-carotene bleaching inhibition and thiobarbituric acid reactive substances inhibition. The PEF demonstrated cytoprotective effects in AFB1-treated chicken hepatocytes by reducing the cellular lipid peroxidation and enhancing antioxidant enzymes production. The viability of AFB1-treated hepatocytes was improved by PEF through up-regulation of oxidative stress tolerance genes and down-regulation of pro-inflammatory and apoptosis associated genes.

    CONCLUSIONS: The present findings supported the proposition that the phenolic compounds present in PKC could be a potential cytoprotective agent towards AFB1 cytotoxicity.

    Matched MeSH terms: Hepatocytes/metabolism
  5. Dewanjee S, Dua TK, Khanra R, Das S, Barma S, Joardar S, et al.
    PLoS One, 2015;10(10):e0139831.
    PMID: 26473485 DOI: 10.1371/journal.pone.0139831
    BACKGROUND: Ipomoea aquatica (Convolvulaceae), an aquatic edible plant, is traditionally used against heavy metal toxicity in India. The current study intended to explore the protective role of edible (aqueous) extract of I. aquatica (AEIA) against experimentally induced Pb-intoxication.

    METHODS: The cytoprotective role of AEIA was measured on mouse hepatocytes by cell viability assay followed by Hoechst staining and flow cytometric assay. The effect on ROS production, lipid peroxidation, protein carbonylation, intracellular redox status were measured after incubating the hepatocytes with Pb-acetate (6.8 μM) along with AEIA (400 μg/ml). The effects on the expressions of apoptotic signal proteins were estimated by western blotting. The protective role of AEIA was measured by in vivo assay in mice. Haematological, serum biochemical, tissue redox status, Pb bioaccumulation and histological parameters were evaluated to estimate the protective role of AEIA (100 mg/kg) against Pb-acetate (5 mg/kg) intoxication.

    RESULTS: Pb-acetate treated hepatocytes showed a gradual reduction of cell viability dose-dependently with an IC50 value of 6.8 μM. Pb-acetate treated hepatocytes exhibited significantly enhanced levels (p < 0.01) of ROS production, lipid peroxidation, protein carbonylation with concomitant depletion (p < 0.01) of antioxidant enzymes and GSH. However, AEIA treatment could significantly restore the aforementioned parameters in murine hepatocytes near to normalcy. Besides, AEIA significantly reversed (p < 0.05-0.01) the alterations of transcription levels of apoptotic proteins viz. Bcl 2, Bad, Cyt C, Apaf-1, cleaved caspases [caspase 3, caspase 8 and caspase 9], Fas and Bid. In in vivo bioassay, Pb-acetate treatment caused significantly high intracellular Pb burden and oxidative pressure in the kidney, liver, heart, brain and testes in mice. In addition, the haematological and serum biochemical factors were changed significantly in Pb-acetate-treated animals. AEIA treatment restored significantly the evaluated-parameters to the near-normal position.

    CONCLUSION: The extract may offer the protective effect via counteracting with Pb mediated oxidative stress and/or promoting the elimination of Pb by chelating. The presence of substantial quantities of flavonoids, phenolics and saponins would be responsible for the overall protective effect.

    Matched MeSH terms: Hepatocytes/metabolism*
  6. Marlini M, Mabuchi A, Mallard BL, Hairulhisyam N, Akashi-Takamura S, Harper JL, et al.
    Exp Physiol, 2016 12 01;101(12):1492-1505.
    PMID: 27634415 DOI: 10.1113/EP085727
    NEW FINDINGS: What is the central question of this study? The liver regenerative process is complex and involves a sequence of signalling events, but the possible involvement of structural and haemodynamic changes in vivo during this process has never been explored. What is the main finding and its importance? Normal sinusoidal blood flow and velocity are crucial for a normal regenerative response, and delays in these haemodynamic events resulted in impaired liver regeneration in lipopolysaccharide-insensitive, C3H/HeJ mice. Toll-like receptor 4 signalling is required for restoration of normal liver architecture during the liver regenerative process. Liver regeneration is delayed in mice with a defective Toll-like receptor 4 (TLR4; C3H/HeJ mice) but is normal in TLR4 knockouts (TLR4-/- ). Here, we investigated the possible involvement of structural and haemodynamic changes in vivo in the underlying mechanism. In lipopolysaccharide-sensitive (C3H/HeN and C57BL/6) and lipopolysaccharide-insensitive (C3H/HeJ and TLR4-/- ) mice, a 70% partial hepatectomy (PH) was performed under inhalational anaesthesia. At days 3 and 7 after PH, the hepatic microcirculation was interrogated using intravital microscopy. Delayed liver regeneration was confirmed in C3H/HeJ, but not in C3H/HeN, C57BL/6 (WT) or TLR4-/- mice by liver weight-to-body-weight ratio, the percentage of proliferating cell nuclear antigen (PCNA)-positive cells and mitotic index data. At day 3 after PH, sinusoidal red blood cell velocity increased by 100% in C3H/HeN mice, but by only 40% in C3H/HeJ mice. Estimated sinusoidal blood flow was significantly higher at day 7 after PH in C3H/HeN than in C3H/HeJ mice. The hepatic cord width was significantly larger in C3H/HeN than in C3H/HeJ mice at day 3 and it was significantly larger in TLR4-/- than in C57BL/6 WT mice at day 7 after PH. Hepatocyte nucleus density and functional sinusoidal density was significantly reduced at days 3 and 7 after PH in all mouse strains compared with their zero-time controls. Functional sinusoidal density was significantly lower in C3H/HeJ compared with C3H/HeN mice at day 7 after PH. The present study indicates that altered sinusoidal blood flow and velocity in C3H/HeJ mice may contribute to the observed delay in the regenerative response in these mice. In addition, restoration of normal liver architecture may be delayed in TLR4-/- mice.
    Matched MeSH terms: Hepatocytes/metabolism
  7. Sasidharan S, Aravindran S, Latha LY, Vijenthi R, Saravanan D, Amutha S
    Molecules, 2010 Jun 23;15(6):4478-89.
    PMID: 20657455 DOI: 10.3390/molecules15064478
    BACKGROUND: The objective of this study was to investigate the antioxidant and hepatoprotective effects of methanolic extracts of L. edodes and the determination of their total phenolics content.

    RESULTS: The amount of total phenolics was estimated to be 70.83 mg Gallic Acid Equivalent (GAE) per gram of dry extract. The antioxidant activity of the L. edodes extract was 39.0% at a concentration of 1 mg/mL and was also concentration dependant, with an EC(50) value of 4.4 mg/mL. Different groups of animals (Wister albino mice) were administered paracetamol (1 g/kg, p.o.). L. edodes extract at a dose of 200 mg/kg was administered to the paracetamol treated mice for seven days. The effects of L. edodes extract on serum transaminases (SGOT, SGPT), alkaline phosphatase (ALP) and bilirubin were measured in the paracetamol-induced hepatotoxic mice. L. edodes extract produced significant (p < 0.05) hepatoprotective effects by decreasing the activity of serum enzymes and bilirubin.

    CONCLUSIONS: From these results, it was suggested that L. edodes extract could perhaps protect liver cells from paracetamol-induced liver damage by its antioxidative effect on hepatocytes, hence diminishing or eliminating the harmful effects of toxic metabolites of paracetamol.

    Matched MeSH terms: Hepatocytes/metabolism
  8. Aji G, Huang Y, Ng ML, Wang W, Lan T, Li M, et al.
    Proc Natl Acad Sci U S A, 2020 09 29;117(39):24434-24442.
    PMID: 32917816 DOI: 10.1073/pnas.2007856117
    Sphingolipid dysregulation is often associated with insulin resistance, while the enzymes controlling sphingolipid metabolism are emerging as therapeutic targets for improving insulin sensitivity. We report herein that sphingosine kinase 2 (SphK2), a key enzyme in sphingolipid catabolism, plays a critical role in the regulation of hepatic insulin signaling and glucose homeostasis both in vitro and in vivo. Hepatocyte-specific Sphk2 knockout mice exhibit pronounced insulin resistance and glucose intolerance. Likewise, SphK2-deficient hepatocytes are resistant to insulin-induced activation of the phosphoinositide 3-kinase (PI3K)-Akt-FoxO1 pathway and elevated hepatic glucose production. Mechanistically, SphK2 deficiency leads to the accumulation of sphingosine that, in turn, suppresses hepatic insulin signaling by inhibiting PI3K activation in hepatocytes. Either reexpressing functional SphK2 or pharmacologically inhibiting sphingosine production restores insulin sensitivity in SphK2-deficient hepatocytes. In conclusion, the current study provides both experimental findings and mechanistic data showing that SphK2 and sphingosine in the liver are critical regulators of insulin sensitivity and glucose homeostasis.
    Matched MeSH terms: Hepatocytes/metabolism
  9. Hussein MZ, Al Ali SH, Zainal Z, Hakim MN
    Int J Nanomedicine, 2011;6:1373-83.
    PMID: 21796241 DOI: 10.2147/IJN.S21567
    An ellagic acid (EA)-zinc layered hydroxide (ZLH) nanohybrid (EAN) was synthesized under a nonaqueous environment using EA and zinc oxide (ZnO) as the precursors. Powder X-ray diffraction showed that the basal spacing of the nanohybrid was 10.4 Å, resulting in the spatial orientation of EA molecules between the interlayers of 22.5° from z-axis with two negative charges at 8,8' position of the molecules pointed toward the ZLH interlayers. FTIR study showed that the intercalated EA spectral feature is generally similar to that of EA, but with bands slightly shifted. This indicates that some chemical bonding of EA presence between the nanohybrid interlayers was slightly changed, due to the formation of host-guest interaction. The nanohybrid is of mesopores type with 58.8% drug loading and enhanced thermal stability. The release of the drug active, EA from the nanohybrid was found to be sustained and therefore has good potential to be used as a drug controlled-release formulation. In vitro bioassay study showed that the EAN has a mild effect on the hepatocytes cells, similar to its counterpart, free EA.
    Matched MeSH terms: Hepatocytes/metabolism
  10. Mohd-Yusof NY, Monroig O, Mohd-Adnan A, Wan KL, Tocher DR
    Fish Physiol Biochem, 2010 Dec;36(4):827-43.
    PMID: 20532815 DOI: 10.1007/s10695-010-9409-4
    Lates calcarifer, commonly known as the Asian sea bass or barramundi, is an interesting species that has great aquaculture potential in Asia including Malaysia and also Australia. We have investigated essential fatty acid metabolism in this species, focusing on the endogenous highly unsaturated fatty acid (HUFA) synthesis pathway using both biochemical and molecular biological approaches. Fatty acyl desaturase (Fad) and elongase (Elovl) cDNAs were cloned and functional characterization identified them as ∆6 Fad and Elovl5 elongase enzymes, respectively. The ∆6 Fad was equally active toward 18:3n-3 and 18:2n-6, and Elovl5 exhibited elongation activity for C18-20 and C20-22 elongation and a trace of C22-24 activity. The tissue profile of gene expression for ∆6 fad and elovl5 genes, showed brain to have the highest expression of both genes compared to all other tissues. The results of tissue fatty acid analysis showed that the brain contained more docosahexaenoic acid (DHA, 22:6n-3) than flesh, liver and intestine. The HUFA synthesis activity in isolated hepatocytes and enterocytes using [1-(14)C]18:3n-3 as substrate was very low with the only desaturated product detected being 18:4n-3. These findings indicate that L. calcarifer display an essential fatty acid pattern similar to other marine fish in that they appear unable to synthesize HUFA from C18 substrates. High expression of ∆6 fad and elovl5 genes in brain may indicate a role for these enzymes in maintaining high DHA levels in neural tissues through conversion of 20:5n-3.
    Matched MeSH terms: Hepatocytes/metabolism
  11. Yusof KM, Makpol S, Jamal R, Harun R, Mokhtar N, Ngah WZ
    Molecules, 2015 Jun 03;20(6):10280-97.
    PMID: 26046324 DOI: 10.3390/molecules200610280
    Numerous bioactive compounds have cytotoxic properties towards cancer cells. However, most studies have used single compounds when bioactives may target different pathways and exert greater cytotoxic effects when used in combination. Therefore, the objective of this study was to determine the anti-proliferative effect of γ-tocotrienol (γ-T3) and 6-gingerol (6G) in combination by evaluating apoptosis and active caspase-3 in HT-29 and SW837 colorectal cancer cells. MTS assays were performed to determine the anti-proliferative and cytotoxicity effect of γ-T3 (0-150 µg/mL) and 6G (0-300 µg/mL) on the cells. The half maximal inhibitory concentration (IC50) value of 6G+ γ-T3 for HT-29 was 105 + 67 µg/mL and for SW837 it was 70 + 20 µg/mL. Apoptosis, active caspase-3 and annexin V FITC assays were performed after 24 h of treatment using flow cytometry. These bioactives in combination showed synergistic effect on HT-29 (CI: 0.89 ± 0.02,) and SW837 (CI: 0.79 ± 0.10) apoptosis was increased by 21.2% in HT-29 and 55.4% in SW837 (p < 0.05) after 24 h treatment, while normal hepatic WRL-68 cells were unaffected. Increased apoptosis by the combined treatments was also observed morphologically, with effects like cell shrinkage and pyknosis. In conclusion, although further studies need to be done, γ-T3 and 6G when used in combination act synergistically increasing cytotoxicity and apoptosis in cancer cells.
    Matched MeSH terms: Hepatocytes/metabolism
  12. Chen YF, Chong CL, Wu YC, Wang YL, Tsai KN, Kuo TM, et al.
    PLoS One, 2015;10(6):e0131743.
    PMID: 26121644 DOI: 10.1371/journal.pone.0131743
    Hepatitis B virus reactivation is an important medical issue in cancer patients who undergo systemic chemotherapy. Up to half of CHB carriers receiving chemotherapy develop hepatitis and among these cases a notable proportion are associated with HBV reactivation. However, the molecular mechanism(s) through which various chemotherapeutic agents induce HBV reactivation is not yet fully understood. In this study, we investigated the role of the cell cycle regulator p21 (Waf1/Cip1) in the modulation of HBV replication when a common chemotherapeutic agent, doxorubicin, is present. We showed that p21 expression was increased by doxorubicin treatment. This elevation in p21 expression enhanced the expression of CCAAT/enhancer-binding protein α (C/EBPα); such an increase is likely to promote the binding of C/EBPα to the HBV promoter, which will contribute to the activation of HBV replication. Our current study thus reveals the mechanism underlying doxorubicin modulation of HBV replication and provides an increased understanding of HBV reactivation in CHB patients who are receiving systemic chemotherapy.
    Matched MeSH terms: Hepatocytes/metabolism
  13. Uthaya Kumar US, Chen Y, Kanwar JR, Sasidharan S
    Oxid Med Cell Longev, 2016;2016:6841348.
    PMID: 28053693 DOI: 10.1155/2016/6841348
    The therapeutic potential of Cassia surattensis in reducing free radical-induced oxidative stress and inflammation particularly in hepatic diseases was evaluated in this study. The polyphenol rich C. surattensis seed extract showed good in vitro antioxidant. C. surattensis seed extract contained total phenolic content of 100.99 mg GAE/g dry weight and there was a positive correlation (r > 0.9) between total phenolic content and the antioxidant activities of the seed extract. C. surattensis seed extract significantly (p < 0.05) reduced the elevated levels of serum liver enzymes (ALT, AST, and ALP) and relative liver weight in paracetamol-induced liver hepatotoxicity in mice. Moreover, the extract significantly (p < 0.05) enhanced the antioxidant enzymes and glutathione (GSH) contents in the liver tissues, which led to decrease of malondialdehyde (MDA) level. The histopathological examination showed the liver protective effect of C. surattensis seed extract against paracetamol-induced histoarchitectural alterations by maximum recovery in the histoarchitecture of the liver tissue. Furthermore, histopathological observations correspondingly supported the biochemical assay outcome, that is, the significant reduction in elevated levels of serum liver enzymes. In conclusion, C. surattensis seed extract enhanced the in vivo antioxidant status and showed antihepatotoxic activities, which is probably due to the presence of phenolic compounds.
    Matched MeSH terms: Hepatocytes/metabolism
  14. Nna VU, Bakar ABA, Mohamed M
    Life Sci, 2018 Oct 15;211:40-50.
    PMID: 30205096 DOI: 10.1016/j.lfs.2018.09.018
    AIMS: Hepatic oxidative stress and weak antioxidant defence system resulting in hepatic lesion, has been reported in diabetic rats. The present study investigated the possible hepatoprotective effects of Malaysian propolis (MP) in diabetic rats, on the background that MP has been reported to have anti-hyperglycemic, antioxidant and anti-inflammatory effects.

    MATERIALS AND METHODS: Sprague-Dawley rats were randomly divided into 5 groups, namely: normal control (NC), diabetic control (DC), diabetic on 300 mg/kg b.w. MP, diabetic on 300 mg/kg b.w. metformin, and diabetic on MP and metformin combined therapy. Treatment was done orally for 4 weeks, and NC and DC groups received distilled water as vehicle.

    KEY FINDINGS: Results showed increased fasting blood glucose and serum markers of hepatic lesion (aspartate aminotransferase, alkaline phosphatase, alanine aminotransferase and gamma-glutamyl transferase), increased hepatic lactate dehydrogenase activity, decreased hepatic superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and glutathione reductase activities, increased immunoexpressions of nuclear factor kappa B, tumor necrosis factor-α, interleukin(IL)-1β and caspase-3, and decreased immunoexpressions of IL-10 and proliferating cell nuclear antigen in the liver of DC group. Histopathology of the liver revealed numerous hepatocytes with pyknotic nuclei and inflammatory infiltration, while periodic acid-schiff staining decreased in the liver of DC group. Treatment with MP attenuated these negative effects and was comparable to metformin. Furthermore, these effects were better attenuated in the combined therapy-treated diabetic rats.

    SIGNIFICANCE: Malaysian propolis attenuates hepatic lesion in DM and exerts a synergistic protective effect with the anti-hyperglycemic medication, metformin.

    Matched MeSH terms: Hepatocytes/metabolism
  15. Chew CH, Chew GS, Najimudin N, Tengku-Muhammad TS
    Int J Biochem Cell Biol, 2007;39(10):1975-86.
    PMID: 17616429
    Peroxisome proliferator activated receptor alpha has been implicated as a regulator of acute phase response genes in hepatocytes. Interleukin-6 is widely known as a major cytokine responsible in the regulation of acute phase proteins and, therefore, acute phase response. Unfortunately, to date, very little is understood about the molecular mechanisms by which interleukin-6 regulates the gene expression of peroxisome proliferator activated receptor alpha. Here, we report the molecular mechanisms by which peroxisome proliferator activated receptor alpha was regulated by interleukin-6 in human HepG2 cells. Interleukin-6 was shown to down-regulate the peroxisome proliferator activated receptor alpha gene expression at the level of gene transcription. Functional dissection of human peroxisome proliferator activated receptor alpha promoter B revealed the role of predicted CCAAT/enhancer-binding protein binding site (-164/+34) in mediating the interleukin-6 inhibitory effects on peroxisome proliferator activated receptor alpha mRNA expression and electrophoretic mobility shift assay showed the binding of CCAAT/enhancer-binding protein isoforms to this cis-acting elements was increased in interleukin-6-treated HepG2 cells. Co-transfection experiments, then, demonstrated that CCAAT/enhancer-binding protein beta either in homodimer or heterodimer with CCAAT/enhancer-binding protein alpha and CCAAT/enhancer-binding protein delta plays a predominant role in inhibiting the transcriptional activity of peroxisome proliferator activated receptor alpha promoter B, thus, reducing the peroxisome proliferator activated receptor alpha mRNA expression. These studies, therefore, suggest a novel mechanism for interleukin-6-mediated inhibition of peroxisome proliferator activated receptor alpha gene expression that involves the activation of CCAAT/enhancer-binding protein isoforms with CCAAT/enhancer-binding protein beta may play a major role.
    Matched MeSH terms: Hepatocytes/metabolism
  16. Abu Bakar MH, Sarmidi MR, Tan JS, Mohamad Rosdi MN
    Eur J Pharmacol, 2017 Mar 15;799:73-83.
    PMID: 28161417 DOI: 10.1016/j.ejphar.2017.01.043
    Accumulating evidence indicates that mitochondrial dysfunction-induced inflammation is among the convergence points for the greatest hallmarks of hepatic insulin resistance. Celastrol, an anti-inflammatory compound from the root of Tripterygium Wilfordii has been reported to mitigate insulin resistance and inflammation in animal disease models. Nevertheless, the specific mechanistic actions of celastrol in modulating such improvements at the cellular level remain obscure. The present study sought to explore the mechanistic roles of celastrol upon insulin resistance induced by palmitate in C3A human hepatocytes. The hepatocytes exposed to palmitate (0.75mM) for 48h exhibited reduced both basal and insulin-stimulated glucose uptake, mitochondrial dysfunction, leading to increased mitochondrial oxidative stress with diminished fatty acid oxidation. Elevated expressions of nuclear factor-kappa B p65 (NF-κB p65), c-Jun NH(2)-terminal kinase (JNK) signaling pathways and the amplified release of pro-inflammatory cytokines including IL-8, IL-6, TNF-α and CRP were observed following palmitate treatment. Consistently, palmitate reduced and augmented phosphorylated Tyrosine-612 and Serine-307 of insulin receptor substrate-1 (IRS-1) proteins, respectively in hepatocytes. However, celastrol at the optimum concentration of 30nM was able to reverse these deleterious occasions and protected the cells from mitochondrial dysfunction and insulin resistance. Importantly, we presented evidence for the first time that celastrol efficiently prevented palmitate-induced insulin resistance in hepatocytes at least, via improved mitochondrial functions and insulin signaling pathways. In summary, the present investigation underlines a conceivable mechanism to elucidate the cytoprotective potential of celastrol in attenuating mitochondrial dysfunction and inflammation against the development of hepatic insulin resistance.
    Matched MeSH terms: Hepatocytes/metabolism*
  17. Leong CR, Funami K, Oshiumi H, Mengao D, Takaki H, Matsumoto M, et al.
    Oncotarget, 2016 10 18;7(42):68179-68193.
    PMID: 27626689 DOI: 10.18632/oncotarget.11907
    Hepatitis B virus (HBV) barely induces host interferon (IFN)-stimulated genes (ISGs), which allows efficient HBV replication in the immortalized mouse hepatocytes as per human hepatocytes. Here we found that transfection of Isg20 plasmid robustly inhibits the HBV replication in HBV-infected hepatocytes irrespective of IRF3 or IFN promoter activation. Transfection of Isg20 is thus effective to eradicate HBV in the infected hepatocytes. Transfection of HBV genome or ε-stem of HBV pgRNA (active pgRNA moiety) failed to induce Isg20 in the hepatocytes, while control polyI:C (a viral dsRNA analogue mimic) activated MAVS pathway leading to production of type I IFN and then ISGsg20 via the IFN-α/β receptor (IFNAR). Consistently, addition of IFN-α induced Isg20 and partially suppressed HBV replication in hepatocytes. Chasing HBV RNA, DNA and proteins by blotting indicated that ISG20 expression decreased HBV RNA and replicative DNA in HBV-transfected cells, which resulted in low HBs antigen production and virus titer. The exonuclease domains of ISG20 mainly participated in HBV-RNA decay. In vivo hydrodynamic injection, ISG20 was crucial for suppressing HBV replication without degrading host RNA in the liver. Taken together, ISG20 acts as an innate anti-HBV effector that selectively degrades HBV RNA and blocks replication of infectious HBV particles. ISG20 would be a critical effector for ameliorating chronic HBV infection in the IFN therapy.
    Matched MeSH terms: Hepatocytes/metabolism*
  18. Chai BK, Al-Shagga M, Pan Y, Then SM, Ting KN, Loh HS, et al.
    Lipids, 2019 06;54(6-7):369-379.
    PMID: 31124166 DOI: 10.1002/lipd.12154
    Dysregulated hepatic gluconeogenesis is a hallmark of insulin resistance and type 2 diabetes mellitus (T2DM). Although existing drugs have been proven to improve gluconeogenesis, achieving this objective with functional food is of interest, especially using conjugated linoleic acid (CLA) found in dairy products. Both cis-9, trans-11 (c9,t11) and trans-10, cis-12 (t10,c12) isomers of CLA were tested in human (HepG2) and rat (H4IIE) hepatocytes for their potential effects on gluconeogenesis. The hepatocytes exposed for 24 h with 20 μM of c9,t11-CLA had attenuated the gluconeogenesis in both HepG2 and H4IIE by 62.5% and 80.1%, respectively. In contrast, t10,c12-CLA had no effect. Of note, in HepG2 cells, the exposure of c9,t11-CLA decreased the transcription of gluconeogenic enzymes, cytosolic phosphoenolpyruvate carboxykinase (PCK1) by 87.7%, and glucose-6-phosphatase catalytic subunit (G6PC) by 38.0%, while t10,c12-CLA increased the expression of G6PC, suggesting the isomer-specific effects of CLA on hepatic glucose production. In HepG2, the peroxisome proliferator-activated receptor (PPAR) agonist, rosiglitazone, reduced the glucose production by 72.9%. However, co-administration of c9,t11-CLA and rosiglitazone neither exacerbated nor attenuated the efficacy of rosiglitazone to inhibit glucose production; meanwhile, t10,c12-CLA abrogated the efficacy of rosiglitazone. Paradoxically, PPARγ antagonist GW 9662 also led to 70.2% reduction of glucose production and near undetectable PCK1 expression by abrogating CLA actions. Together, while the precise mechanisms by which CLA isomers modulate hepatic gluconeogenesis directly or via PPAR warrant further investigation, our findings establish that c9,t11-CLA suppresses gluconeogenesis by decreasing PEPCK on hepatocytes.
    Matched MeSH terms: Hepatocytes/metabolism*
  19. Gao X, Santhanam RK, Xue Z, Jia Y, Wang Y, Lu Y, et al.
    J Food Sci, 2020 Apr;85(4):1060-1069.
    PMID: 32147838 DOI: 10.1111/1750-3841.15084
    Inonotus obliquus is a traditional mushroom well known for its therapeutic value. In this study, various solvent fractions of I. obliquus were preliminarily screened for their antioxidant, α-amylase and α-glucosidase inhibition properties. To improve the drug delivery, the active fraction (ethyl acetate fraction) of I. obliquus was synthesized into fungisome (ethyl acetate phophotidyl choline complex, EAPC) and its physical parameters were assessed using Fourier transform infrared spectroscopy (FTIR), High performance liquid chromatography (HPLC), Scanning electron microscope (SEM), and ς potential analysis. Then normal human hepatic L02 cells was used to evaluate the cytotoxicity of EAPC. The results showed that EA fraction possesses significant free radical scavenging, α-amylase and α-glucosidase inhibition properties. FTIR, SEM, and HPLC analysis confirmed the fungisome formation. The particle size of EAPC was 102.80 ± 0.42 nm and the ς potential was -54.30 ± 0.61 mV. The percentage of drug entrapment efficiency was 97.13% and the drug release rates of EAPC in simulated gastric fluid and simulated intestinal fluid were 75.04 ± 0.29% and 93.03 ± 0.36%, respectively. EAPC was nontoxic to L02 cells, however it could selectively fight against the H2 O2 induced oxidative damage in L02 cells. This is the first study to provide scientific information to utilize the active fraction of I. obliquus as fungisome. PRACTICAL APPLICATIONS: Inonotus obliquus (IO) is a traditional medicinal fungus. The extracts of IO have obvious antioxidant and hypoglycemic activities. Ethyl acetate (EA) fraction of IO was encapsulated in liposomes to form EAPC. EAPC has a sustained-release effect. It has nontoxic to L02 cells and could protect L02 cells from oxidative damage caused by hydrogen peroxide. This study could provide new ideas for the treatment of diabetes.
    Matched MeSH terms: Hepatocytes/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links