Displaying publications 1 - 20 of 96 in total

Abstract:
Sort:
  1. Arif AS, Mansor S, Logeswaran R, Karim HA
    J Med Syst, 2015 Feb;39(2):5.
    PMID: 25628161 DOI: 10.1007/s10916-015-0200-z
    The massive number of medical images produced by fluoroscopic and other conventional diagnostic imaging devices demand a considerable amount of space for data storage. This paper proposes an effective method for lossless compression of fluoroscopic images. The main contribution in this paper is the extraction of the regions of interest (ROI) in fluoroscopic images using appropriate shapes. The extracted ROI is then effectively compressed using customized correlation and the combination of Run Length and Huffman coding, to increase compression ratio. The experimental results achieved show that the proposed method is able to improve the compression ratio by 400 % as compared to that of traditional methods.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods
  2. Sim KS, Ting HY, Lai MA, Tso CP
    J Microsc, 2009 Jun;234(3):243-50.
    PMID: 19493101 DOI: 10.1111/j.1365-2818.2009.03167.x
    An improvement to the previously proposed Canny optimization technique for scanning electron microscope image colorization is reported. The additional process is adaptive tuning, where colour tuning is performed adaptively, based on comparing the original luminance values with calculated luminance values. The complete adaptive Canny optimization technique gives significantly better mechanical contrast on scanning electron microscope grey-scale images than do existing methods.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods*
  3. Sim KS, Thong LW, Ting HY, Tso CP
    J Microsc, 2010 Feb;237(2):111-8.
    PMID: 20096041 DOI: 10.1111/j.1365-2818.2009.03325.x
    Interpolation techniques that are used for image magnification to obtain more useful details of the surface such as morphology and mechanical contrast usually rely on the signal information distributed around edges and areas of sharp changes and these signal information can also be used to predict missing details from the sample image. However, many of these interpolation methods tend to smooth or blur out image details around the edges. In the present study, a Lagrange time delay estimation interpolator method is proposed and this method only requires a small filter order and has no noticeable estimation bias. Comparing results with the original scanning electron microscope magnification and results of various other interpolation methods, the Lagrange time delay estimation interpolator is found to be more efficient, more robust and easier to execute.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods*
  4. Sudarshan VK, Mookiah MR, Acharya UR, Chandran V, Molinari F, Fujita H, et al.
    Comput Biol Med, 2016 Feb 1;69:97-111.
    PMID: 26761591 DOI: 10.1016/j.compbiomed.2015.12.006
    Ultrasound is an important and low cost imaging modality used to study the internal organs of human body and blood flow through blood vessels. It uses high frequency sound waves to acquire images of internal organs. It is used to screen normal, benign and malignant tissues of various organs. Healthy and malignant tissues generate different echoes for ultrasound. Hence, it provides useful information about the potential tumor tissues that can be analyzed for diagnostic purposes before therapeutic procedures. Ultrasound images are affected with speckle noise due to an air gap between the transducer probe and the body. The challenge is to design and develop robust image preprocessing, segmentation and feature extraction algorithms to locate the tumor region and to extract subtle information from isolated tumor region for diagnosis. This information can be revealed using a scale space technique such as the Discrete Wavelet Transform (DWT). It decomposes an image into images at different scales using low pass and high pass filters. These filters help to identify the detail or sudden changes in intensity in the image. These changes are reflected in the wavelet coefficients. Various texture, statistical and image based features can be extracted from these coefficients. The extracted features are subjected to statistical analysis to identify the significant features to discriminate normal and malignant ultrasound images using supervised classifiers. This paper presents a review of wavelet techniques used for preprocessing, segmentation and feature extraction of breast, thyroid, ovarian and prostate cancer using ultrasound images.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods*
  5. Khan MB, Lee XY, Nisar H, Ng CA, Yeap KH, Malik AS
    Adv Exp Med Biol, 2015;823:227-48.
    PMID: 25381111 DOI: 10.1007/978-3-319-10984-8_13
    Activated sludge system is generally used in wastewater treatment plants for processing domestic influent. Conventionally the activated sludge wastewater treatment is monitored by measuring physico-chemical parameters like total suspended solids (TSSol), sludge volume index (SVI) and chemical oxygen demand (COD) etc. For the measurement, tests are conducted in the laboratory, which take many hours to give the final measurement. Digital image processing and analysis offers a better alternative not only to monitor and characterize the current state of activated sludge but also to predict the future state. The characterization by image processing and analysis is done by correlating the time evolution of parameters extracted by image analysis of floc and filaments with the physico-chemical parameters. This chapter briefly reviews the activated sludge wastewater treatment; and, procedures of image acquisition, preprocessing, segmentation and analysis in the specific context of activated sludge wastewater treatment. In the latter part additional procedures like z-stacking, image stitching are introduced for wastewater image preprocessing, which are not previously used in the context of activated sludge. Different preprocessing and segmentation techniques are proposed, along with the survey of imaging procedures reported in the literature. Finally the image analysis based morphological parameters and correlation of the parameters with regard to monitoring and prediction of activated sludge are discussed. Hence it is observed that image analysis can play a very useful role in the monitoring of activated sludge wastewater treatment plants.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods*
  6. Jusman Y, Ng SC, Abu Osman NA
    ScientificWorldJournal, 2014;2014:810368.
    PMID: 24955419 DOI: 10.1155/2014/810368
    Advent of medical image digitalization leads to image processing and computer-aided diagnosis systems in numerous clinical applications. These technologies could be used to automatically diagnose patient or serve as second opinion to pathologists. This paper briefly reviews cervical screening techniques, advantages, and disadvantages. The digital data of the screening techniques are used as data for the computer screening system as replaced in the expert analysis. Four stages of the computer system are enhancement, features extraction, feature selection, and classification reviewed in detail. The computer system based on cytology data and electromagnetic spectra data achieved better accuracy than other data.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods*
  7. Arigbabu OA, Ahmad SM, Adnan WA, Yussof S, Iranmanesh V, Malallah FL
    ScientificWorldJournal, 2014;2014:460973.
    PMID: 25121120 DOI: 10.1155/2014/460973
    Soft biometrics can be used as a prescreening filter, either by using single trait or by combining several traits to aid the performance of recognition systems in an unobtrusive way. In many practical visual surveillance scenarios, facial information becomes difficult to be effectively constructed due to several varying challenges. However, from distance the visual appearance of an object can be efficiently inferred, thereby providing the possibility of estimating body related information. This paper presents an approach for estimating body related soft biometrics; specifically we propose a new approach based on body measurement and artificial neural network for predicting body weight of subjects and incorporate the existing technique on single view metrology for height estimation in videos with low frame rate. Our evaluation on 1120 frame sets of 80 subjects from a newly compiled dataset shows that the mentioned soft biometric information of human subjects can be adequately predicted from set of frames.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods
  8. Sim KS, Tan YY, Lai MA, Tso CP, Lim WK
    J Microsc, 2010 Apr 1;238(1):44-56.
    PMID: 20384837 DOI: 10.1111/j.1365-2818.2009.03328.x
    An exponential contrast stretching (ECS) technique is developed to reduce the charging effects on scanning electron microscope images. Compared to some of the conventional histogram equalization methods, such as bi-histogram equalization and recursive mean-separate histogram equalization, the proposed ECS method yields better image compensation. Diode sample chips with insulating and conductive surfaces are used as test samples to evaluate the efficiency of the developed algorithm. The algorithm is implemented in software with a frame grabber card, forming the front-end video capture element.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods*
  9. Noor NM, Rijal OM, Yunus A, Abu-Bakar SA
    Comput Med Imaging Graph, 2010 Mar;34(2):160-6.
    PMID: 19758785 DOI: 10.1016/j.compmedimag.2009.08.005
    This paper presents a statistical method for the detection of lobar pneumonia when using digitized chest X-ray films. Each region of interest was represented by a vector of wavelet texture measures which is then multiplied by the orthogonal matrix Q(2). The first two elements of the transformed vectors were shown to have a bivariate normal distribution. Misclassification probabilities were estimated using probability ellipsoids and discriminant functions. The result of this study recommends the detection of pneumonia by constructing probability ellipsoids or discriminant function using maximum energy and maximum column sum energy texture measures where misclassification probabilities were less than 0.15.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods*
  10. Reza AW, Eswaran C, Hati S
    J Med Syst, 2008 Apr;32(2):147-55.
    PMID: 18461818
    Blood vessel detection in retinal images is a fundamental step for feature extraction and interpretation of image content. This paper proposes a novel computational paradigm for detection of blood vessels in fundus images based on RGB components and quadtree decomposition. The proposed algorithm employs median filtering, quadtree decomposition, post filtration of detected edges, and morphological reconstruction on retinal images. The application of preprocessing algorithm helps in enhancing the image to make it better fit for the subsequent analysis and it is a vital phase before decomposing the image. Quadtree decomposition provides information on the different types of blocks and intensities of the pixels within the blocks. The post filtration and morphological reconstruction assist in filling the edges of the blood vessels and removing the false alarms and unwanted objects from the background, while restoring the original shape of the connected vessels. The proposed method which makes use of the three color components (RGB) is tested on various images of publicly available database. The results are compared with those obtained by other known methods as well as with the results obtained by using the proposed method with the green color component only. It is shown that the proposed method can yield true positive fraction values as high as 0.77, which are comparable to or somewhat higher than the results obtained by other known methods. It is also shown that the effect of noise can be reduced if the proposed method is implemented using only the green color component.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods*
  11. Logeswaran R, Eswaran C
    J Med Syst, 2006 Apr;30(2):133-8.
    PMID: 16705998
    Many medical examinations involve acquisition of a large series of slice images for 3D reconstruction of the organ of interest. With the paperless hospital concept and telemedicine, there is very heavy utilization of limited electronic storage and transmission bandwidth. This paper proposes model-based compression to reduce the load on such resources, as well as aid diagnosis through the 3D reconstruction of the structures of interest, for images acquired by various modalities, such as MRI, Ultrasound, CT, PET etc. and stored in the DICOM file format. An example implementation for the biliary track in MRCP images is illustrated in the paper. Significant compression gains may be derived from the proposed method, and a suitable mixture of the models and raw images would enhance the patient medical history archives as the models may be stored in the DICOM file format used in most medical archiving systems.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods*
  12. Abu A, Susan LL, Sidhu AS, Dhillon SK
    BMC Bioinformatics, 2013;14:48.
    PMID: 23398696 DOI: 10.1186/1471-2105-14-48
    Digitised monogenean images are usually stored in file system directories in an unstructured manner. In this paper we propose a semantic representation of these images in the form of a Monogenean Haptoral Bar Image (MHBI) ontology, which are annotated with taxonomic classification, diagnostic hard part and image properties. The data we used are basically of the monogenean species found in fish, thus we built a simple Fish ontology to demonstrate how the host (fish) ontology can be linked to the MHBI ontology. This will enable linking of information from the monogenean ontology to the host species found in the fish ontology without changing the underlying schema for either of the ontologies.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods*
  13. Husham A, Hazim Alkawaz M, Saba T, Rehman A, Saleh Alghamdi J
    Microsc Res Tech, 2016 Oct;79(10):993-997.
    PMID: 27476682 DOI: 10.1002/jemt.22733
    Segmentation of objects from a noisy and complex image is still a challenging task that needs to be addressed. This article proposed a new method to detect and segment nuclei to determine whether they are malignant or not (determination of the region of interest, noise removal, enhance the image, candidate detection is employed on the centroid transform to evaluate the centroid of each object, the level set [LS] is applied to segment the nuclei). The proposed method consists of three main stages: preprocessing, seed detection, and segmentation. Preprocessing stage involves the preparation of the image conditions to ensure that they meet the segmentation requirements. Seed detection detects the seed point to be used in the segmentation stage, which refers to the process of segmenting the nuclei using the LS method. In this research work, 58 H&E breast cancer images from the UCSB Bio-Segmentation Benchmark dataset are evaluated. The proposed method reveals the high performance and accuracy in comparison to the techniques reported in literature. The experimental results are also harmonized with the ground truth images.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods*
  14. Tai MW, Chong ZF, Asif MK, Rahmat RA, Nambiar P
    Leg Med (Tokyo), 2016 Sep;22:42-8.
    PMID: 27591538 DOI: 10.1016/j.legalmed.2016.07.009
    This study was to compare the suitability and precision of xerographic and computer-assisted methods for bite mark investigations. Eleven subjects were asked to bite on their forearm and the bite marks were photographically recorded. Alginate impressions of the subjects' dentition were taken and their casts were made using dental stone. The overlays generated by xerographic method were obtained by photocopying the subjects' casts and the incisal edge outlines were then transferred on a transparent sheet. The bite mark images were imported into Adobe Photoshop® software and printed to life-size. The bite mark analyses using xerographically generated overlays were done by comparing an overlay to the corresponding printed bite mark images manually. In computer-assisted method, the subjects' casts were scanned into Adobe Photoshop®. The bite mark analyses using computer-assisted overlay generation were done by matching an overlay and the corresponding bite mark images digitally using Adobe Photoshop®. Another comparison method was superimposing the cast images with corresponding bite mark images employing the Adobe Photoshop® CS6 and GIF-Animator©. A score with a range of 0-3 was given during analysis to each precision-determining criterion and the score was increased with better matching. The Kruskal Wallis H test showed significant difference between the three sets of data (H=18.761, p<0.05). In conclusion, bite mark analysis using the computer-assisted animated-superimposition method was the most accurate, followed by the computer-assisted overlay generation and lastly the xerographic method. The superior precision contributed by digital method is discernible despite the human skin being a poor recording medium of bite marks.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods*
  15. Niazi MKK, Abas FS, Senaras C, Pennell M, Sahiner B, Chen W, et al.
    PLoS One, 2018;13(5):e0196547.
    PMID: 29746503 DOI: 10.1371/journal.pone.0196547
    Automatic and accurate detection of positive and negative nuclei from images of immunostained tissue biopsies is critical to the success of digital pathology. The evaluation of most nuclei detection algorithms relies on manually generated ground truth prepared by pathologists, which is unfortunately time-consuming and suffers from inter-pathologist variability. In this work, we developed a digital immunohistochemistry (IHC) phantom that can be used for evaluating computer algorithms for enumeration of IHC positive cells. Our phantom development consists of two main steps, 1) extraction of the individual as well as nuclei clumps of both positive and negative nuclei from real WSI images, and 2) systematic placement of the extracted nuclei clumps on an image canvas. The resulting images are visually similar to the original tissue images. We created a set of 42 images with different concentrations of positive and negative nuclei. These images were evaluated by four board certified pathologists in the task of estimating the ratio of positive to total number of nuclei. The resulting concordance correlation coefficients (CCC) between the pathologist and the true ratio range from 0.86 to 0.95 (point estimates). The same ratio was also computed by an automated computer algorithm, which yielded a CCC value of 0.99. Reading the phantom data with known ground truth, the human readers show substantial variability and lower average performance than the computer algorithm in terms of CCC. This shows the limitation of using a human reader panel to establish a reference standard for the evaluation of computer algorithms, thereby highlighting the usefulness of the phantom developed in this work. Using our phantom images, we further developed a function that can approximate the true ratio from the area of the positive and negative nuclei, hence avoiding the need to detect individual nuclei. The predicted ratios of 10 held-out images using the function (trained on 32 images) are within ±2.68% of the true ratio. Moreover, we also report the evaluation of a computerized image analysis method on the synthetic tissue dataset.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods*
  16. Alsaih K, Lemaitre G, Rastgoo M, Massich J, Sidibé D, Meriaudeau F
    Biomed Eng Online, 2017 Jun 07;16(1):68.
    PMID: 28592309 DOI: 10.1186/s12938-017-0352-9
    BACKGROUND: Spectral domain optical coherence tomography (OCT) (SD-OCT) is most widely imaging equipment used in ophthalmology to detect diabetic macular edema (DME). Indeed, it offers an accurate visualization of the morphology of the retina as well as the retina layers.

    METHODS: The dataset used in this study has been acquired by the Singapore Eye Research Institute (SERI), using CIRRUS TM (Carl Zeiss Meditec, Inc., Dublin, CA, USA) SD-OCT device. The dataset consists of 32 OCT volumes (16 DME and 16 normal cases). Each volume contains 128 B-scans with resolution of 1024 px × 512 px, resulting in more than 3800 images being processed. All SD-OCT volumes are read and assessed by trained graders and identified as normal or DME cases based on evaluation of retinal thickening, hard exudates, intraretinal cystoid space formation, and subretinal fluid. Within the DME sub-set, a large number of lesions has been selected to create a rather complete and diverse DME dataset. This paper presents an automatic classification framework for SD-OCT volumes in order to identify DME versus normal volumes. In this regard, a generic pipeline including pre-processing, feature detection, feature representation, and classification was investigated. More precisely, extraction of histogram of oriented gradients and local binary pattern (LBP) features within a multiresolution approach is used as well as principal component analysis (PCA) and bag of words (BoW) representations.

    RESULTS AND CONCLUSION: Besides comparing individual and combined features, different representation approaches and different classifiers are evaluated. The best results are obtained for LBP[Formula: see text] vectors while represented and classified using PCA and a linear-support vector machine (SVM), leading to a sensitivity(SE) and specificity (SP) of 87.5 and 87.5%, respectively.

    Matched MeSH terms: Image Processing, Computer-Assisted/methods*
  17. Ibrahim MF, Ahmad Sa'ad FS, Zakaria A, Md Shakaff AY
    Sensors (Basel), 2016 Oct 27;16(11).
    PMID: 27801799
    The conventional method of grading Harumanis mango is time-consuming, costly and affected by human bias. In this research, an in-line system was developed to classify Harumanis mango using computer vision. The system was able to identify the irregularity of mango shape and its estimated mass. A group of images of mangoes of different size and shape was used as database set. Some important features such as length, height, centroid and parameter were extracted from each image. Fourier descriptor and size-shape parameters were used to describe the mango shape while the disk method was used to estimate the mass of the mango. Four features have been selected by stepwise discriminant analysis which was effective in sorting regular and misshapen mango. The volume from water displacement method was compared with the volume estimated by image processing using paired t-test and Bland-Altman method. The result between both measurements was not significantly different (P > 0.05). The average correct classification for shape classification was 98% for a training set composed of 180 mangoes. The data was validated with another testing set consist of 140 mangoes which have the success rate of 92%. The same set was used for evaluating the performance of mass estimation. The average success rate of the classification for grading based on its mass was 94%. The results indicate that the in-line sorting system using machine vision has a great potential in automatic fruit sorting according to its shape and mass.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods*
  18. Siddiqui MF, Reza AW, Shafique A, Omer H, Kanesan J
    Magn Reson Imaging, 2017 12;44:82-91.
    PMID: 28855113 DOI: 10.1016/j.mri.2017.08.005
    Sensitivity Encoding (SENSE) is a widely used technique in Parallel Magnetic Resonance Imaging (MRI) to reduce scan time. Reconfigurable hardware based architecture for SENSE can potentially provide image reconstruction with much less computation time. Application specific hardware platform for SENSE may dramatically increase the power efficiency of the system and can decrease the execution time to obtain MR images. A new implementation of SENSE on Field Programmable Gate Array (FPGA) is presented in this study, which provides real-time SENSE reconstruction right on the receiver coil data acquisition system with no need to transfer the raw data to the MRI server, thereby minimizing the transmission noise and memory usage. The proposed SENSE architecture can reconstruct MR images using receiver coil sensitivity maps obtained using pre-scan and eigenvector (E-maps) methods. The results show that the proposed system consumes remarkably less computation time for SENSE reconstruction, i.e., 0.164ms @ 200MHz, while maintaining the quality of the reconstructed images with good mean SNR (29+ dB), less RMSE (<5×10-2) and comparable artefact power (<9×10-4) to conventional SENSE reconstruction. A comparison of the center line profiles of the reconstructed and reference images also indicates a good quality of the reconstructed images. Furthermore, the results indicate that the proposed architectural design can prove to be a significant tool for SENSE reconstruction in modern MRI scanners and its low power consumption feature can be remarkable for portable MRI scanners.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods*
  19. Faisal A, Ng SC, Goh SL, Lai KW
    Med Biol Eng Comput, 2018 Apr;56(4):657-669.
    PMID: 28849317 DOI: 10.1007/s11517-017-1710-2
    Quantitative thickness computation of knee cartilage in ultrasound images requires segmentation of a monotonous hypoechoic band between the soft tissue-cartilage interface and the cartilage-bone interface. Speckle noise and intensity bias captured in the ultrasound images often complicates the segmentation task. This paper presents knee cartilage segmentation using locally statistical level set method (LSLSM) and thickness computation using normal distance. Comparison on several level set methods in the attempt of segmenting the knee cartilage shows that LSLSM yields a more satisfactory result. When LSLSM was applied to 80 datasets, the qualitative segmentation assessment indicates a substantial agreement with Cohen's κ coefficient of 0.73. The quantitative validation metrics of Dice similarity coefficient and Hausdorff distance have average values of 0.91 ± 0.01 and 6.21 ± 0.59 pixels, respectively. These satisfactory segmentation results are making the true thickness between two interfaces of the cartilage possible to be computed based on the segmented images. The measured cartilage thickness ranged from 1.35 to 2.42 mm with an average value of 1.97 ± 0.11 mm, reflecting the robustness of the segmentation algorithm to various cartilage thickness. These results indicate a potential application of the methods described for assessment of cartilage degeneration where changes in the cartilage thickness can be quantified over time by comparing the true thickness at a certain time interval.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods*
  20. Acharya UR, Koh JEW, Hagiwara Y, Tan JH, Gertych A, Vijayananthan A, et al.
    Comput Biol Med, 2018 03 01;94:11-18.
    PMID: 29353161 DOI: 10.1016/j.compbiomed.2017.12.024
    Liver is the heaviest internal organ of the human body and performs many vital functions. Prolonged cirrhosis and fatty liver disease may lead to the formation of benign or malignant lesions in this organ, and an early and reliable evaluation of these conditions can improve treatment outcomes. Ultrasound imaging is a safe, non-invasive, and cost-effective way of diagnosing liver lesions. However, this technique has limited performance in determining the nature of the lesions. This study initiates a computer-aided diagnosis (CAD) system to aid radiologists in an objective and more reliable interpretation of ultrasound images of liver lesions. In this work, we have employed radon transform and bi-directional empirical mode decomposition (BEMD) to extract features from the focal liver lesions. After which, the extracted features were subjected to particle swarm optimization (PSO) technique for the selection of a set of optimized features for classification. Our automated CAD system can differentiate normal, malignant, and benign liver lesions using machine learning algorithms. It was trained using 78 normal, 26 benign and 36 malignant focal lesions of the liver. The accuracy, sensitivity, and specificity of lesion classification were 92.95%, 90.80%, and 97.44%, respectively. The proposed CAD system is fully automatic as no segmentation of region-of-interest (ROI) is required.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods*
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links