Displaying publications 1 - 20 of 37 in total

Abstract:
Sort:
  1. Mohd Syukran Abdul Khadir, Ahmad Syariff Ahmad Tajudin, Kevin Tan
    MyJurnal
    Kecergasan fizikal adalah kebolehan tubuh badan untuk berfungsi secara efisien dan efektif, menikmati masa kesenggangan untuk sihat, menghindari penyakit, dan untuk bertindak balas ketika keadaan kecemasan. Aktiviti fizikal berkait rapat dengan tahap kecergasan fizikal seseorang. Aktiviti fizikal adalah pergerakan badan yang dihasilkan oleh rangka otot yang akan mengakibatkan pengeluaran tenaga. Kualiti kehidupan bagi rakyat di Malaysia dipercayai akan memberi kesan terhadap pertumbuhan pembangunan fizikal di sesebuah tempat tersebut. Kawasan bandar ialah kawasan yang diwartakan serta kawasan tepu bina yang bersempadan dengannya dan gabungan kedua-dua kawasan ini mempunyai penduduk seramai 10,000 orang atau lebih semasa Banci Penduduk dan Perumahan 2000. Kawasan selainnya yang diwartakan dan mempunyai jumlah penduduk kurang daripada 10,000 orang serta kawasan yang tidak diwartakan, dikelaskan sebagai luar bandar. Perbezaan kawasan tempat tinggal di kawasan yang dibezakan oleh saiz penduduk boleh dikaitkan dengan perbezaan dalam tabiat makan, akses untuk ke tempat kemudahan sukan dan peluang untuk aktiviti fizikal, dan lain-lain lagi. Pendedahan-pendedahan ini terhadap alam sekitar juga mungkin menentukan gaya kehidupan serta risiko terhadap kardiovaskular dan ia mungkin dikaitkan dengan tahap kecergasan. Justeru, kajian ulasan ini dijalankan untuk mengenalpasti faktor yang mempengaruhi tahap kecergasan dalam kalangan remaja dan kanak-kanak di kawasan bandar dan luar bandar.
    Matched MeSH terms: Leucine
  2. Arunachalam A, Lakshmanan DK, Ravichandran G, Paul S, Manickam S, Kumar PV, et al.
    Med Oncol, 2021 Sep 04;38(10):122.
    PMID: 34482423 DOI: 10.1007/s12032-021-01573-z
    A limited number of overexpressed transcription factors are associated with cancer progression in many types of cancer. BTB and CNC homology 1 (BACH1) is the first mammalian heme-binding transcription factor that belongs to the basic region leucine zipper (bZIP) family and a member of CNC (cap 'n' collar). It forms heterodimers with the small musculoaponeurotic fibrosarcoma (MAF) proteins and stimulates or suppresses the expression of target genes under a very low intracellular heme concentration. It possesses a significant regulatory role in heme homeostasis, oxidative stress, cell cycle, apoptosis, angiogenesis, and cancer metastasis progression. This review discusses the current knowledge about how BACH1 regulates cancer metastasis in various types of cancer and other carcinogenic associated factors such as oxidative stress, cell cycle regulation, apoptosis, and angiogenesis. Overall, from the reported studies and outcomes, it could be realized that BACH1 is a potential pharmacological target for discovering new therapeutic anticancer drugs.
    Matched MeSH terms: Basic-Leucine Zipper Transcription Factors/genetics*
  3. Mohd Fadzli Ahmad, Hasdianty Abdullah
    MyJurnal
    The 3D structure of the insecticidal protein Cry1Ba4 produced by B. thuringiensis subsp.
    Entomocidus HD-9 was determined using homology modelling. From the model built, we have
    been able to identify the possible sites for structure modification by site-directed mutagenesis.
    The mutation was introduced at the conserved region of -helix 7 by substituting the
    hydrophobic motif that comprises alanine 216, leucine 217 and phenylalanine 218 with arginine.
    Wild and mutant Cry1Ba4 genes were cloned into pET200/D-TOPO and expressed in the
    expression host. The result suggests that mutant Cry1Ba4 protein was less toxic to the larvae
    Plutella xylostella compared to the wild-type. In conclusion, alteration in the structure of
    Domain I had left an impact on the toxicity of Cry1Ba4 against P. xylostella.
    Matched MeSH terms: Leucine
  4. Awaad AS, Alafeefy AM, Alasmary FAS, El-Meligy RM, Zain ME, Alqasoumi SI
    Saudi Pharm J, 2017 Nov;25(7):967-971.
    PMID: 29158702 DOI: 10.1016/j.jsps.2017.02.012
    A novel and safe essential amino acid (Leucine) incorporating sulfanilamide was synthesized, and evaluated for its anti-ulcerogenic activity and in vitro anti-Helicobacter pylori activity. The new molecule showed a dose dependent activity against absolute ethanol-induced ulcer in rats, it produced percent protection of control ulcer by 66.7 at dose 100 mg/kg. In addition it showed a potent anti-Helicobacter pylori activity in vitro against 7 clinically isolated strains. The minimum inhibitory concentration (MIC) ranged from 12.5 to 50 μg/ml. The preliminary safety studies and toxicity profile are optimistic and encouraging.
    Matched MeSH terms: Leucine
  5. Papadaki V, Asada K, Watson JK, Tamura T, Leung A, Hopkins J, et al.
    Cancers (Basel), 2020 Nov 13;12(11).
    PMID: 33202923 DOI: 10.3390/cancers12113362
    Osteomodulin (OMD) and proline/arginine-rich end leucine repeat protein (PRELP) are secreted extracellular matrix proteins belonging to the small leucine-rich proteoglycans family. We found that OMD and PRELP were specifically expressed in umbrella cells in bladder epithelia, and their expression levels were dramatically downregulated in all bladder cancers from very early stages and various epithelial cancers. Our in vitro studies including gene expression profiling using bladder cancer cell lines revealed that OMD or PRELP application suppressed the cancer progression by inhibiting TGF-β and EGF pathways, which reversed epithelial-mesenchymal transition (EMT), activated cell-cell adhesion, and inhibited various oncogenic pathways. Furthermore, the overexpression of OMD in bladder cancer cells strongly inhibited the anchorage-independent growth and tumorigenicity in mouse xenograft studies. On the other hand, we found that in the bladder epithelia, the knockout mice of OMD and/or PRELP gene caused partial EMT and a loss of tight junctions of the umbrella cells and resulted in formation of a bladder carcinoma in situ-like structure by spontaneous breakdowns of the umbrella cell layer. Furthermore, the ontological analysis of the expression profiling of an OMD knockout mouse bladder demonstrated very high similarity with those obtained from human bladder cancers. Our data indicate that OMD and PRELP are endogenous inhibitors of cancer initiation and progression by controlling EMT. OMD and/or PRELP may have potential for the treatment of bladder cancer.
    Matched MeSH terms: Leucine; Small Leucine-Rich Proteoglycans
  6. Lim SY, Lim JL, Ahmad-Annuar A, Lohmann K, Tan AH, Lim KB, et al.
    Neurodegener Dis, 2020;20(1):39-45.
    PMID: 32580205 DOI: 10.1159/000508131
    Pathogenic and risk variants in the LRRK2 gene are among the main genetic contributors to Parkinson's disease (PD) worldwide, and LRRK2-targeted therapies for patients with PARK-LRRK2are now entering clinical trials. However, in contrast to the LRRK2 G2019S mutation commonly found in Caucasians, North-African Arabs, and Ashkenazi Jews, relatively little is known about other causative LRRK2 mutations, and data on genotype-phenotype correlations are largely lacking. This report is from an ongoing multicentre study in which next-generation sequencing-based PD gene panel testing has so far been conducted on 499 PD patients of various ethnicities from Malaysia. We describe 2 sisters of Chinese ancestry with PD who carry the R1441C mutation in LRRK2 (which in Asians has been reported in only 2 Chinese patients previously), and highlight interesting clinical observations made over a decade of close follow-up. We further explored the feasibility of using a brief, expert-administered rating scale (the Clinical Impression of Severity Index; CISI-PD) to capture data on global disease severity in a large (n = 820) unselected cohort of PD patients, including severely disabled individuals typically excluded from research studies. All patients in this study were managed and evaluated by the same PD neurologist, and these data were used to make broad comparisons between the monogenic PD cases versus the overall "real world" PD cohort. This report contributes to the scarce literature on R1441C PARK-LRRK2, offering insights into natural history and epidemiological aspects, and provides support for the application of a simple and reliable clinical tool that can improve the inclusion of under-represented patient groups in PD research.
    Matched MeSH terms: Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics*
  7. Xiao B, Deng X, Ng EY, Allen JC, Lim SY, Ahmad-Annuar A, et al.
    JAMA Neurol, 2018 01 01;75(1):127-128.
    PMID: 29131875 DOI: 10.1001/jamaneurol.2017.3363
    Matched MeSH terms: Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics*
  8. Leong YQ, Koh RY, Chye SM, Ng KY
    Biol Chem, 2023 May 25;404(6):551-567.
    PMID: 36634094 DOI: 10.1515/hsz-2022-0228
    Increase evidence from epidemiological studies have shown an inverse association between Parkinson's disease (PD) and lung cancer. PD and lung cancer are both geriatric diseases, where these two diseases are sharing some common genetic determinants. Several PD-associated genes including alpha synuclein (SNCA), PTEN-induced kinase 1 (PINK1), parkin, parkinsonism associated deglycase (DJ-1), leucine-rich repeat kinase 2 (LRRK2), F-box protein 7 (FBXO7) and ubiquitin C-terminal hydrolase L1 (UCHL1) were reported to have altered expressions in lung cancer patients. This indicates that certain PD-associated genes might be important in conferring anticancer effects. This review aims to depict the physiological functions of these genes, and discuss the putative roles of these PD-associated genes in lung cancer. The understanding of the roles of these genes in the lung cancer progression might be important in the identification of new treatment targets for lung cancer. Gene therapy that aims to alter the expressions of these genes could be developed for future anticancer therapy. As a result, studying the roles of these genes in lung cancer may also help to understand their involvements as well as their roles in the pathogenesis of PD.
    Matched MeSH terms: Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics
  9. Lee HN, Mostovoy Y, Hsu TY, Chang AH, Brem RB
    G3 (Bethesda), 2013 Dec 09;3(12):2187-94.
    PMID: 24142925 DOI: 10.1534/g3.113.008011
    Comparative genomic studies have reported widespread variation in levels of gene expression within and between species. Using these data to infer organism-level trait divergence has proven to be a key challenge in the field. We have used a wild Malaysian population of S. cerevisiae as a test bed in the search to predict and validate trait differences based on observations of regulatory variation. Malaysian yeast, when cultured in standard medium, activated regulatory programs that protect cells from the toxic effects of high iron. Malaysian yeast also showed a hyperactive regulatory response during culture in the presence of excess iron and had a unique growth defect in conditions of high iron. Molecular validation experiments pinpointed the iron metabolism factors AFT1, CCC1, and YAP5 as contributors to these molecular and cellular phenotypes; in genome-scale sequence analyses, a suite of iron toxicity response genes showed evidence for rapid protein evolution in Malaysian yeast. Our findings support a model in which iron metabolism has diverged in Malaysian yeast as a consequence of a change in selective pressure, with Malaysian alleles shifting the dynamic range of iron response to low-iron concentrations and weakening resistance to extreme iron toxicity. By dissecting the iron scarcity specialist behavior of Malaysian yeast, our work highlights the power of expression divergence as a signpost for biologically and evolutionarily relevant variation at the organismal level. Interpreting the phenotypic relevance of gene expression variation is one of the primary challenges of modern genomics.
    Matched MeSH terms: Basic-Leucine Zipper Transcription Factors/genetics; Basic-Leucine Zipper Transcription Factors/metabolism
  10. Kavitha R, Nazni WA, Tan TC, Lee HL, Isa MN, Azirun MS
    Malays J Pathol, 2012 Dec;34(2):127-32.
    PMID: 23424775 MyJurnal
    Forensic entomology applies knowledge about insects associated with decedent in crime scene investigation. It is possible to calculate a minimum postmortem interval (PMI) by determining the age and species of the oldest blow fly larvae feeding on decedent. This study was conducted in Malaysia to identify maggot specimens collected during crime scene investigations. The usefulness of the molecular and morphological approach in species identifications was evaluated in 10 morphologically identified blow fly larvae sampled from 10 different crime scenes in Malaysia. The molecular identification method involved the sequencing of a total length of 2.2 kilo base pairs encompassing the 'barcode' fragments of the mitochondrial cytochrome oxidase I (COI), cytochrome oxidase II (COII) and t-RNA leucine genes. Phylogenetic analyses confirmed the presence of Chrysomya megacephala, Chrysomya rufifacies and Chrysomya nigripes. In addition, one unidentified blow fly species was found based on phylogenetic tree analysis.
    Matched MeSH terms: Leucine/analysis; Leucine/genetics
  11. Qu D, Show PL, Miao X
    Int J Mol Sci, 2021 Feb 27;22(5).
    PMID: 33673599 DOI: 10.3390/ijms22052387
    Saline-alkali soil has become an important environmental problem for crop productivity. One of the most effective approaches is to cultivate new stress-tolerant plants through genetic engineering. Through RNA-seq analysis and RT-PCR validation, a novel bZIP transcription factor ChbZIP1, which is significantly upregulated at alkali conditions, was obtained from alkaliphilic microalgae Chlorella sp. BLD. Overexpression of ChbZIP1 in Saccharomyces cerevisiae and Arabidopsis increased their alkali resistance, indicating ChbZIP1 may play important roles in alkali stress response. Through subcellular localization and transcriptional activation activity analyses, we found that ChbZIP1 is a nuclear-localized bZIP TF with transactivation activity to bind with the motif of G-box 2 (TGACGT). Functional analysis found that genes such as GPX1, DOX1, CAT2, and EMB, which contained G-box 2 and were associated with oxidative stress, were significantly upregulated in Arabidopsis with ChbZIP1 overexpression. The antioxidant ability was also enhanced in transgenic Arabidopsis. These results indicate that ChbZIP1 might mediate plant adaptation to alkali stress through the active oxygen detoxification pathway. Thus, ChbZIP1 may contribute to genetically improving plants' tolerance to alkali stress.
    Matched MeSH terms: Basic-Leucine Zipper Transcription Factors/genetics; Basic-Leucine Zipper Transcription Factors/metabolism*
  12. Ikeda T, Ong EB, Watanabe N, Sakaguchi N, Maeda K, Koito A
    Sci Rep, 2016;6:19035.
    PMID: 26738439 DOI: 10.1038/srep19035
    APOBEC1 (A1) proteins from lagomorphs and rodents have deaminase-dependent restriction activity against HIV-1, whereas human A1 exerts a negligible effect. To investigate these differences in the restriction of HIV-1 by A1 proteins, a series of chimeric proteins combining rabbit and human A1s was constructed. Homology models of the A1s indicated that their activities derive from functional domains that likely act in tandem through a dimeric interface. The C-terminal region containing the leucine-rich motif and the dimerization domains of rabbit A1 is important for its anti-HIV-1 activity. The A1 chimeras with strong anti-HIV-1 activity were incorporated into virions more efficiently than those without anti-HIV-1 activity, and exhibited potent DNA-mutator activity. Therefore, the C-terminal region of rabbit A1 is involved in both its packaging into the HIV-1 virion and its deamination activity against both viral cDNA and genomic RNA. This study identifies the novel molecular mechanism underlying the target specificity of A1.
    Matched MeSH terms: Leucine
  13. Azizi P, Rafii MY, Abdullah SN, Nejat N, Maziah M, Hanafi MM, et al.
    Crit Rev Biotechnol, 2016;36(1):165-74.
    PMID: 25198435 DOI: 10.3109/07388551.2014.946883
    The blast fungus, Magnaporthe oryzae, causes serious disease on a wide variety of grasses including rice, wheat and barley. The recognition of pathogens is an amazing ability of plants including strategies for displacing virulence effectors through the adaption of both conserved and variable pathogen elicitors. The pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) were reported as two main innate immune responses in plants, where PTI gives basal resistance and ETI confers durable resistance. The PTI consists of extracellular surface receptors that are able to recognize PAMPs. PAMPs detect microbial features such as fungal chitin that complete a vital function during the organism's life. In contrast, ETI is mediated by intracellular receptor molecules containing nucleotide-binding (NB) and leucine rich repeat (LRR) domains that specifically recognize effector proteins produced by the pathogen. To enhance crop resistance, understanding the host resistance mechanisms against pathogen infection strategies and having a deeper knowledge of innate immunity system are essential. This review summarizes the recent advances on the molecular mechanism of innate immunity systems of rice against M. oryzae. The discussion will be centered on the latest success reported in plant-pathogen interactions and integrated defense responses in rice.
    Matched MeSH terms: Leucine
  14. Saiman MZ, Miettinen K, Mustafa NR, Choi YH, Verpoorte R, Schulte AE
    Plant Cell Tissue Organ Cult., 2018;134(1):41-53.
    PMID: 31007320 DOI: 10.1007/s11240-018-1398-5
    Previous studies showed that geraniol could be an upstream limiting factor in the monoterpenoid pathway towards the production of terpenoid indole alkaloid (TIA) in Catharanthus roseus cells and hairy root cultures. This shortage in precursor availability could be due to (1) limited expression of the plastidial geraniol synthase resulted in a low activity of the enzyme to catalyze the conversion of geranyl diphosphate to geraniol; or (2) the limitation of geraniol transport from plastids to cytosol. Therefore, in this study, C. roseus's geraniol synthase (CrGES) gene was overexpressed in either plastids or cytosol of a non-TIA producing C. roseus cell line. The expression of CrGES in the plastids or cytosol was confirmed and the constitutive transformation lines were successfully established. A targeted metabolite analysis using HPLC shows that the transformed cell lines did not produce TIA or iridoid precursors unless elicited with jasmonic acid, as their parent cell line. This indicates a requirement for expression of additional, inducible pathway genes to reach production of TIA in this cell line. Interestingly, further analysis using NMR-based metabolomics reveals that the overexpression of CrGES impacts primary metabolism differently if expressed in the plastids or cytosol. The levels of valine, leucine, and some metabolites derived from the shikimate pathway, i.e. phenylalanine and tyrosine were significantly higher in the plastidial- but lower in the cytosolic-CrGES overexpressing cell lines. This result shows that overexpression of CrGES in the plastids or cytosol caused alteration of primary metabolism that associated to the plant cell growth and development. A comprehensive omics analysis is necessary to reveal the full effect of metabolic engineering.
    Matched MeSH terms: Leucine
  15. Md Hatta MA, Ghosh S, Athiyannan N, Richardson T, Steuernagel B, Yu G, et al.
    Mol Plant Microbe Interact, 2020 Nov;33(11):1286-1298.
    PMID: 32779520 DOI: 10.1094/MPMI-01-20-0018-R
    In the last 20 years, severe wheat stem rust outbreaks have been recorded in Africa, Europe, and Central Asia. This previously well controlled disease, caused by the fungus Puccinia graminis f. sp. tritici, has reemerged as a major threat to wheat cultivation. The stem rust (Sr) resistance gene Sr22 encodes a nucleotide-binding and leucine-rich repeat receptor which confers resistance to the highly virulent African stem rust isolate Ug99. Here, we show that the Sr22 gene is conserved among grasses in the Triticeae and Poeae lineages. Triticeae species contain syntenic loci with single-copy orthologs of Sr22 on chromosome 7, except Hordeum vulgare, which has experienced major expansions and rearrangements at the locus. We also describe 14 Sr22 sequence variants obtained from both Triticum boeoticum and the domesticated form of this species, T. monococcum, which have been postulated to encode both functional and nonfunctional Sr22 alleles. The nucleotide sequence analysis of these alleles identified historical sequence exchange resulting from recombination or gene conversion, including breakpoints within codons, which expanded the coding potential at these positions by introduction of nonsynonymous substitutions. Three Sr22 alleles were transformed into wheat cultivar Fielder and two postulated resistant alleles from Schomburgk (hexaploid wheat introgressed with T. boeoticum segment carrying Sr22) and T. monococcum accession PI190945, respectively, conferred resistance to P. graminis f. sp. tritici race TTKSK, thereby unequivocally confirming Sr22 effectiveness against Ug99. The third allele from accession PI573523, previously believed to confer susceptibility, was confirmed as nonfunctional against Australian P. graminis f. sp. tritici race 98-1,2,3,5,6.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
    Matched MeSH terms: Leucine
  16. Ande SR, Fussi H, Knauer H, Murkovic M, Ghisla S, Fröhlich KU, et al.
    Yeast, 2008 May;25(5):349-57.
    PMID: 18437704 DOI: 10.1002/yea.1592
    Here we report for the first time that L-amino acid oxidase (LAAO), a major component of snake venom, induces apoptosis in yeast. The causative agent for induction of apoptosis has been shown to be hydrogen peroxide, produced by the enzymatic activity of LAAO. However, the addition of catalase, a specific hydrogen peroxide scavenger, does not prevent cell demise completely. Intriguingly, depletion of leucine from the medium by LAAO and the interaction of LAAO with yeast cells are shown to be the major factors responsible for cell demise in the presence of catalase.
    Matched MeSH terms: Leucine/metabolism*
  17. Yeo BPH, Foong LC, Tam SM, Lee V, Hwang SS
    Biochem Mol Biol Educ, 2018 01;46(1):47-53.
    PMID: 29131478 DOI: 10.1002/bmb.21089
    Structures and functions of protein motifs are widely included in many biology-based course syllabi. However, little emphasis is placed to link this knowledge to applications in biotechnology to enhance the learning experience. Here, the conserved motifs of nucleotide binding site-leucine rich repeats (NBS-LRR) proteins, successfully used for the isolation and characterization of many plant resistance gene analogues (RGAs), is featured in the development of a series of laboratory experiments using important molecular biology techniques. A set of previously isolated RGA sequences is used as the model for performing sequence alignment and visualising 3D protein structure using current bioinformatics programs (Clustal Omega and Argusdock software). A pair of established degenerate primer sequences is provided for the prediction of targeted amino acids sequences in the RGAs. Reverse transcription-polymerase chain reaction (RT-PCR) is used to amplify RGAs from total RNA samples extracted from the tropical wild relative of black pepper, Piper colubrinum (Piperaceae). This laboratory exercise enables students to correlate specific DNA sequences with respective amino acid codes and the interaction between conserved motifs of resistance genes with putatively targeted proteins. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):47-53, 2018.
    Matched MeSH terms: Leucine/genetics
  18. Vrzalikova K, Ibrahim M, Vockerodt M, Perry T, Margielewska S, Lupino L, et al.
    Leukemia, 2018 01;32(1):214-223.
    PMID: 28878352 DOI: 10.1038/leu.2017.275
    The Hodgkin/Reed-Sternberg cells of classical Hodgkin lymphoma (HL) are characterised by the aberrant activation of multiple signalling pathways. Here we show that a subset of HL displays altered expression of sphingosine-1-phosphate (S1P) receptors (S1PR)s. S1P activates phosphatidylinositide 3-kinase (PI3-K) in these cells that is mediated by the increased expression of S1PR1 and the decreased expression of S1PR2. We also showed that genes regulated by the PI3-K signalling pathway in HL cell lines significantly overlap with the transcriptional programme of primary HRS cells. Genes upregulated by the PI3-K pathway included the basic leucine zipper transcription factor, ATF-like 3 (BATF3), which is normally associated with the development of dendritic cells. Immunohistochemistry confirmed that BATF3 was expressed in HRS cells of most HL cases. In contrast, in normal lymphoid tissues, BATF3 expression was confined to a small fraction of CD30-positive immunoblasts. Knockdown of BATF3 in HL cell lines revealed that BATF3 contributed to the transcriptional programme of primary HRS cells, including the upregulation of S1PR1. Our data suggest that disruption of this potentially oncogenic feedforward S1P signalling loop could provide novel therapeutic opportunities for patients with HL.
    Matched MeSH terms: Basic-Leucine Zipper Transcription Factors/genetics*
  19. Yahya F, Mohd Bakri M, Hossain MZ, Syed Abdul Rahman SN, Mohammed Alabsi A, Ramanathan A
    Medicina (Kaunas), 2022 Sep 06;58(9).
    PMID: 36143906 DOI: 10.3390/medicina58091229
    Background and Objectives: Oral squamous cell carcinoma (OSCC) is the sixth most common malignancy in the world. Transient receptor potential vanilloid 4 (TRPV4) channel has been shown to be involved in angiogenesis in multiple types of tumors. However, not much is known about TRPV4′s involvement in OSCC. Thus, in this study, we investigate the effect of administering a TRPV4 agonist on angiogenesis in OSCC. Materials and Methods: Thirty-six Sprague Dawley (SD) rats were used in this study. 4-nitroquinoline 1-oxide (4NQO) was used to induce OSCC. Cisplatin (an anticancer drug), and GSK1016790A (an agonist for TRPV4) was used in this study. Immunohistochemistry was employed to examine the TRPV4 expression. An RT2 Profiler PCR Array was performed for gene expression analysis of TRPV4, vascular growth factors that correspond directly with angiogenesis, such as angiopoietin (Ang-1 and Ang-2), and tyrosine kinase (Tie-1 and Tie-2) receptors. Tumor vessel maturity was assessed by microvessel density and microvessel-pericyte-coverage index. Results: RT2 profiler PCR array showed significant elevated levels of Ang-1 (2.1-fold change; p < 0.05) and Tie-2 (4.5-fold change; p < 0.05) in OSCC following the administration of a combination of GSK1016790A and cisplatin. Additionally, the combination treatment significantly reduced the microvessel density (p < 0.01) and significantly increased the percentage of microvessels covered with pericytes (p < 0.01) in OSCC. Furthermore, tumor size was significantly reduced (p < 0.05) in rats that received cisplatin alone. The combination treatment also greatly reduced the tumor size; however, the data were not statistically significant. Conclusions: The findings suggest that combining a TRPV4 agonist with cisplatin for treatment of OSCC promote vessels normalization via modulation of Ang-1/Tie-2 pathway.
    Matched MeSH terms: Leucine/analogs & derivatives
  20. Gopalai AA, Lim JL, Li HH, Zhao Y, Lim TT, Eow GB, et al.
    Mol Genet Genomic Med, 2019 Nov;7(11):e604.
    PMID: 31487119 DOI: 10.1002/mgg3.604
    BACKGROUND: The LRRK2 gene is associated with Parkinson's disease (PD) as a number of mutations within the gene have been shown to be susceptibility factors. Studies on various global populations have determined that mutations such as G2019S, G2385R, and R1628P in LRRK2 increase the risk of developing PD while the N551K-R1398H haplotype is associated with conferring protection against developing PD. Here we report a study looking at the N551K and R1398H variants for the first time in the Malaysian population.

    METHODS: Cases (523) which conformed to the United Kingdom PD Brain Bank Criteria for PD were recruited through trained neurologists and age- and ethnically matched controls (491) were individuals free of any neurological disorder. The N551K and R1398H mutations were genotyped using the Taqman SNP genotyping assay.

    RESULTS: A significant protective association for N551K was found in those of Malay ancestry, with a protective trend seen for R1398H. A meta-analysis of Chinese individuals in this cohort with other published cohorts of Chinese ancestry indicated a significant protective role for N551K and R1398H.

    CONCLUSION: This study reports that the N551K-R1398H haplotype is also relevant to the Malaysian population, with a significant protective effect found in those of Malay and Chinese ancestries.

    Matched MeSH terms: Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links