Displaying all 18 publications

Abstract:
Sort:
  1. Kuan CH, Goh SG, Loo YY, Chang WS, Lye YL, Puspanadan S, et al.
    Poult Sci, 2013 Jun;92(6):1664-9.
    PMID: 23687164 DOI: 10.3382/ps.2012-02974
    A total of 216 chicken offal samples (chicken liver = 72; chicken heart = 72; chicken gizzard = 72) from wet markets and hypermarkets in Selangor, Malaysia, were examined for the presence and density of Listeria monocytogenes by using a combination of the most probable number and PCR method. The prevalence of L. monocytogenes in 216 chicken offal samples examined was 26.39%, and among the positive samples, the chicken gizzard showed the highest percentage at 33.33% compared with chicken liver (25.00%) and chicken heart (20.83%). The microbial load of L. monocytogenes in chicken offal samples ranged from <3 to 93.0 most probable number per gram. The presence of L. monocytogenes in chicken offal samples may indicate that chicken offal can act as a possible vehicle for the occurrence of foodborne listeriosis. Hence, there is a need to investigate the biosafety level of chicken offal in Malaysia.
    Matched MeSH terms: Liver/microbiology
  2. Vadivelu J, Vellasamy KM, Thimma J, Mariappan V, Kang WT, Choh LC, et al.
    PLoS Negl Trop Dis, 2017 01;11(1):e0005241.
    PMID: 28045926 DOI: 10.1371/journal.pntd.0005241
    BACKGROUND: During infection, successful bacterial clearance is achieved via the host immune system acting in conjunction with appropriate antibiotic therapy. However, it still remains a tip of the iceberg as to where persistent pathogens namely, Burkholderia pseudomallei (B. pseudomallei) reside/hide to escape from host immune sensors and antimicrobial pressure.

    METHODS: We used transmission electron microscopy (TEM) to investigate post-mortem tissue sections of patients with clinical melioidosis to identify the localisation of a recently identified gut microbiome, B. pseudomallei within host cells. The intranuclear presence of B. pseudomallei was confirmed using transmission electron microscopy (TEM) of experimentally infected guinea pig spleen tissues and Live Z-stack, and ImageJ analysis of fluorescence microscopy analysis of in vitro infection of A549 human lung epithelial cells.

    RESULTS: TEM investigations revealed intranuclear localization of B. pseudomallei in cells of infected human lung and guinea pig spleen tissues. We also found that B. pseudomallei induced actin polymerization following infection of A549 human lung epithelial cells. Infected A549 lung epithelial cells using 3D-Laser scanning confocal microscopy (LSCM) and immunofluorescence microscopy confirmed the intranuclear localization of B. pseudomallei.

    CONCLUSION: B. pseudomallei was found within the nuclear compartment of host cells. The nucleus may play a role as an occult or transient niche for persistence of intracellular pathogens, potentially leading to recurrrent episodes or recrudescence of infection.

    Matched MeSH terms: Liver/microbiology
  3. Marennikova SS, Shelukhina EM, Shenkman LS, Mal'tseva NN, Matsevich GR
    Vopr. Virusol., 1975 May-Jun.
    PMID: 169629
    The results of examinations of sera, blood and organs of different species of monkeys from some Asian and African countries for the presence of antibody to smallpox and viruses of the smallpox group. Significant titers of smallpox antibodies (antihemagglutinins virus-neutralizing and, in some cases, precipitating antibody) were found in a considerable number of monkeys shot near foci with human cases (Equatorial province of Zair Republic). In the same monkeys kidney tissues yielded 3 isolates of smallpox virus group two of which were indistinguishable in the laboratory tests from variola virus. On the basis of these data it is concluded that smallpox viruses circulate among wildlife monkeys in some areas of Equatorial Africa. Further studies along these lines are necessary.
    Matched MeSH terms: Liver/microbiology
  4. Tan RZ, Mohd Nor F, Shafie S, Tan LJ
    Forensic Sci Med Pathol, 2019 03;15(1):151-154.
    PMID: 30293222 DOI: 10.1007/s12024-018-0026-3
    Melioidosis is an infectious disease caused by Burkholderia pseudomallei, a gram-negative intracellular bacillus. Tuberculosis, also an infectious disease, is caused by Mycobacterium tuberculosis, an acid fast bacillus. In both diseases, patients commonly present with fever and respiratory symptoms due to sepsis which might lead to respiratory failure or sudden death if left untreated. Not only are these two entities similar in clinical presentation, but the autopsy findings may mimic each other, giving rise to difficulties in determining the cause of death. We report a case of melioidosis and compare it to a typical case of miliary tuberculosis. Similarities between the cases on gross and histopathological examinations are discussed. In such circumstances, microbiological culture of bodily fluids and internal organs should be performed to ascertain the correct cause of death.
    Matched MeSH terms: Liver/microbiology
  5. Rees RJ
    Bibl Tuberc, 1970;26:189-232.
    PMID: 4244234
    Matched MeSH terms: Liver/microbiology
  6. Bilung LM, Pui CF, Su'ut L, Apun K
    Dis Markers, 2018;2018:1351634.
    PMID: 30154937 DOI: 10.1155/2018/1351634
    In the last decades, leptospirosis had gained public health concern due to morbidity and mortality rates caused by pathogenic Leptospira. The need for rapid and robust molecular typing methods to differentiate this zoonotic pathogen is of utmost importance. Various studies had been conducted to determine the genetic relatedness of Leptospira isolates using molecular typing methods. In this study, 29 pathogenic Leptospira isolates from rat, soil, and water samples in Sarawak, Malaysia, were characterized using BOX-PCR and ERIC-PCR. The effectiveness of these two methods with regard to the ease of interpretation, reproducibility, typeability, and discriminatory power was also being evaluated. Using BOX-PCR, six clusters and 3 single isolates were defined at a genetic distance percentage of 11.2%. ERIC-PCR clustered the isolates into 6 clusters and 2 single isolates at a genetic distance percentage of 6.8%. Both BOX-PCR and ERIC-PCR produced comparable results though the discriminatory index for ERIC-PCR (0.826) was higher than that for BOX-PCR (0.809). From the constructed dendrogram, it could be summarized that the isolates in this study were highly heterogeneous and genetically diverse. The findings from this study indicated that there is no genetic relatedness among the pathogenic Leptospira isolates in relation to the locality, source, and identity, with some exceptions. Out of the 29 pathogenic Leptospira isolates studied, BOX-PCR and ERIC-PCR successfully discriminated 4 isolates (2 isolates each) into the same cluster in relation to sample sources, as well as 2 isolates into the same cluster in association with the sample locality. Future studies shall incorporate the use of other molecular typing methods to make a more thorough comparison on the genetic relatedness of pathogenic Leptospira.
    Matched MeSH terms: Liver/microbiology
  7. Guang-Han O, Leang-Chung C, Vellasamy KM, Mariappan V, Li-Yen C, Vadivelu J
    PLoS One, 2016;11(7):e0158213.
    PMID: 27387381 DOI: 10.1371/journal.pone.0158213
    Burkholderia pseudomallei is an intracellular Gram-negative bacterial pathogen intrinsically resistant to a variety of antibiotics. Phages have been developed for use as an alternative treatment therapy, particularly for bacterial infections that do not respond to conventional antibiotics. In this study, we investigated the use of phages to treat cells infected with B. pseudomallei. Phage C34 isolated from seawater was purified and characterised on the basis of its host range and morphology using transmission electron microscopy (TEM). Phage C34 was able to lyse 39.5% of B. pseudomallei clinical strains. Due to the presence of contractile tail, phage C34 is classified as a member of the family Myoviridae, a tailed double-stranded DNA virus. When 2 × 105 A549 cells were exposed to 2 × 107 PFU of phage C34, 24 hours prior to infection with 2 × 106 CFU of B. pseudomallei, it was found that the survivability of the cells increased to 41.6 ± 6.8% as compared to 22.8 ± 6.0% in untreated control. Additionally, application of phage successfully rescued 33.3% of mice infected with B. pseudomallei and significantly reduced the bacterial load in the spleen of the phage-treated mice. These findings indicate that phage can be a potential antimicrobial agent for B. pseudomallei infections.
    Matched MeSH terms: Liver/microbiology
  8. Chin CY, Monack DM, Nathan S
    Immunology, 2012 Apr;135(4):312-32.
    PMID: 22136109 DOI: 10.1111/j.1365-2567.2011.03544.x
    Diabetes mellitus is a predisposing factor of melioidosis, contributing to higher mortality rates in diabetics infected with Burkholderia pseudomallei. To investigate how diabetes alters the inflammatory response, we established a streptozotocin (STZ) -induced diabetic murine acute-phase melioidosis model. Viable B. pseudomallei cells were consistently detected in the blood, liver and spleen during the 42-hr course of infection but the hyperglycaemic environment did not increase the bacterial burden. However, after 24 hr, granulocyte counts increased in response to infection, whereas blood glucose concentrations decreased over the course of infection. A genome-wide expression analysis of the STZ-diabetic murine acute melioidosis liver identified ~1000 genes whose expression was altered in the STZ-diabetic mice. The STZ-diabetic host transcriptional response was compared with the normoglycaemic host transcriptional response recently reported by our group. The microarray data suggest that the presence of elevated glucose levels impairs the host innate immune system by delaying the identification and recognition of B. pseudomallei surface structures. Consequently, the host is unable to activate the appropriate innate immune response over time, which may explain the increased susceptibility to melioidosis in the STZ-diabetic host. Nevertheless, a general 'alarm signal' of infection as well as defence programmes are still triggered by the STZ-diabetic host, although only 24 hr after infection. In summary, this study demonstrates that in the face of a B. pseudomallei acute infection, poor glycaemic control impaired innate responses during the early stages of B. pseudomallei infection, contributing to the increased susceptibility of STZ-induced diabetics to this fatal disease.
    Matched MeSH terms: Liver/microbiology
  9. Menon BS, Shuaib IL, Zamari M, Haq JA, Aiyar S, Noh LM
    Ann Trop Paediatr, 1998 Mar;18(1):45-8.
    PMID: 9692001
    We describe a Malay girl with disseminated cryptococcosis affecting the lungs, liver, lymph nodes and bones. The diagnosis was made by culture of the bone marrow. Tests of immune function showed that she was HIV-negative but the CD4 percentage was persistently low. Idiopathic CD4+ T-lymphocytopenia was diagnosed. The child died despite two courses of anti-fungal therapy.
    Matched MeSH terms: Liver/microbiology
  10. Lazarev VN, Stipkovits L, Biro J, Miklodi D, Shkarupeta MM, Titova GA, et al.
    Microbes Infect., 2004 May;6(6):536-41.
    PMID: 15158186
    The in vivo action of the antimicrobial peptide melittin, expressed from a recombinant plasmid vector, on chickens experimentally infected with Mycoplasma gallisepticum was studied. The plasmid vector pBI/mel2/rtTA includes the melittin gene under the control of an inducible tetracycline-dependent human cytomegalovirus promoter and the gene coding for the trans-activation protein rtTA. Aerosol administration of the vector, followed by infecting the chickens with M. gallisepticum 1226, is shown to inhibit development of infection. The inhibitory action was confirmed by a complex of clinical, pathomorphological, histological and serological studies, and also by comparing the M. gallisepticum reisolation frequency from the respiratory tract and internal organs. The data suggest that plasmid vectors expressing genes of antimicrobial peptides can be considered as potential agents for the prevention and treatment of mycoplasma infections in poultry farming.
    Matched MeSH terms: Liver/microbiology
  11. Walker JS, Cadigan FC, Vosdingh RA, Chye CT
    J Infect Dis, 1973 Aug;128(2):223-6.
    PMID: 4198721
    Matched MeSH terms: Liver/microbiology
  12. Lau GL, Sieo CC, Tan WS, Hair-Bejo M, Jalila A, Ho YW
    Poult Sci, 2010 Dec;89(12):2589-96.
    PMID: 21076096 DOI: 10.3382/ps.2010-00904
    The efficacy of bacteriophage EC1, a lytic bacteriophage, against Escherichia coli O78:K80, which causes colibacillosis in poultry, was determined in the present study. A total of 480 one-day-old birds were randomly assigned to 4 treatments groups, each with 4 pens of 30 birds. Birds from the control groups (groups I and II) received PBS (pH 7.4) or 10(10) pfu of bacteriophage EC1, respectively. Group III consisted of birds challenged with 10(8) cfu of E. coli O78:K80 and treated with 10(10) pfu of bacteriophage EC1 at 2 h postinfection, whereas birds from group IV were challenged with 10(8) cfu of E. coli O78:K80 only. All the materials were introduced into the birds by intratracheal inoculation. Based on the results of the present study, the infection was found to be less severe in the treated E. coli-challenged group. Mean total viable cell counts of E. coli identified on eosin methylene blue agar (designated EMB + E. coli) in the lungs were significantly lower in treated, E. coli-challenged birds than in untreated, E. coli-challenged birds on d 1 and 2 postinfection. The EMB + E. coli isolation frequency was also lower in treated birds; no E. coli was detectable in blood samples on any sampling day, and E. coli were isolated only in the liver, heart, and spleen of treated chickens at a ratio of 2/6, 1/6, and 3/6, respectively, at d 1 postinfection. The BW of birds from the E. coli-challenged group treated with bacteriophage EC1 were not significantly different from those of birds from both control groups but were 15.4% higher than those of the untreated, E. coli-challenged group on d 21 postinfection. The total mortality rate of birds during the 3-wk experimental period decreased from 83.3% in the untreated, E. coli-challenged birds (group IV) to 13.3% in birds treated with bacteriophage EC1 (group III). These results suggest that bacteriophage EC1 is effective in vivo and could be used to treat colibacillosis in chickens.
    Matched MeSH terms: Liver/microbiology
  13. Chin CY, Monack DM, Nathan S
    BMC Genomics, 2010;11:672.
    PMID: 21110886 DOI: 10.1186/1471-2164-11-672
    At present, very little is known about how Burkholderia pseudomallei (B. pseudomallei) interacts with its host to elicit melioidosis symptoms. We established a murine acute-phase melioidosis model and used DNA microarray technology to investigate the global host/pathogen interaction. We compared the transcriptome of infected liver and spleen with uninfected tissues over an infection period of 42 hr to identify genes whose expression is altered in response to an acute infection.
    Matched MeSH terms: Liver/microbiology
  14. Tohidi R, Idris IB, Panandam JM, Bejo MH
    Avian Pathol, 2012 Dec;41(6):605-12.
    PMID: 23237374 DOI: 10.1080/03079457.2012.739680
    Salmonella Enteritidis is a major cause of food poisoning worldwide, and poultry products are the main source of S. Enteritidis contamination for humans. Among the numerous strategies for disease control, improving genetic resistance to S. Enteritidis has been the most effective approach. We investigated the association between S. Enteritidis burden in the caecum, spleen, and liver of young indigenous chickens and seven candidate genes, selected on the basis of their critical roles in immunological functions. The genes included those encoding interleukin 2 (IL-2), interferon-γ (IFN-γ), transforming growth factor β2 (TGF-β2), immunoglobulin light chain (IgL), toll-like receptor 4 (TLR-4), myeloid differentiation protein 2 (MD-2), and inducible nitric oxide synthase (iNOS). Two Malaysian indigenous chicken breeds were used as sustainable genetic sources of alleles that are resistant to salmonellosis. The polymerase chain reaction restriction fragment-length polymorphism technique was used to genotype the candidate genes. Three different genotypes were observed in all of the candidate genes, except for MD-2. All of the candidate genes showed the Hardy-Weinberg equilibrium for the two populations. The IL-2-MnlI polymorphism was associated with S. Enteritidis burden in the caecum and spleen. The TGF-β2-RsaI, TLR-4-Sau 96I, and iNOS-AluI polymorphisms were associated with the caecum S. Enteritidis load. The other candidate genes were not associated with S. Enteritidis load in any organ. The results indicate that the IL-2, TGF-β2, TLR-4, and iNOS genes are potential candidates for use in selection programmes for increasing genetic resistance against S. Enteritidis in Malaysian indigenous chickens.
    Matched MeSH terms: Liver/microbiology
  15. Tay TF, Maheran M, Too SL, Hasidah MS, Ismail G, Embi N
    Trop Biomed, 2012 Dec;29(4):551-67.
    PMID: 23202600
    The disease melioidosis, caused by the soil bacteria Burkholderia pseudomallei, often manifests as acute septicemia with high fatality. Glycogen synthase kinase-3β (GSK3β) plays a key role during the inflammatory response induced by bacteria. We used a murine model of acute melioidosis to investigate the effects of LiCl, a GSK3 inhibitor on experimental animal survivability as well as TNF-α, IL-1β, IFN-γ, IL-10 and IL-1Ra cytokine levels in blood, lung, liver and spleen of B. pseudomallei-infected mice. Our results showed that administration of 100 μg/g LiCl improved survivability of mice infected with 5 X LD50 of B. pseudomallei. Bacterial counts in spleen, liver and lungs of infected mice administered with LiCl were lower than non-treated controls. Our data also revealed that GSK3β is phosphorylated in the spleen, liver and lung of animals infected with B. pseudomallei. However in infected animals administered with LiCl, higher levels of pGSK3 were detected in the organs. Levels of proinflammatory cytokines (TNF-α, IL-1β and IFN-γ) and anti-inflammatory cytokines (IL-10 and IL-1Ra) in sera and organs tested were elevated significantly following B. pseudomallei infection. With GSK3β inhibition, pro-inflammatory cytokines (TNF-α, IFN-γ, IL-1β) were significantly decreased in all the samples tested whilst the levels of anti-inflammatory cytokines, IL-10 (spleen and lung) and IL-1Ra (spleen, liver and sera) were further elevated. This study represents the first report implicating GSK3β in the modulation of cytokine production during B. pseudomallei infection thus reiterating the important role of GSK3β in the inflammatory response caused by bacterial pathogens.
    Matched MeSH terms: Liver/microbiology
  16. Kang WT, Vellasamy KM, Vadivelu J
    Sci Rep, 2016 09 16;6:33528.
    PMID: 27634329 DOI: 10.1038/srep33528
    Burkholderia pseudomallei, the etiological agent for melioidosis, is known to secrete a type III secretion system (TTSS) protein into the host's internal milieu. One of the TTSS effector protein, BipC, has been shown to play an important role in the B. pseudomallei pathogenesis. To identify the host response profile that was directly or indirectly regulated by this protein, genome-wide transcriptome approach was used to examine the gene expression profiles of infected mice. The transcriptome analysis of the liver and spleen revealed that a total of approximately 1,000 genes were transcriptionally affected by BipC. Genes involved in bacterial invasion, regulation of actin cytoskeleton, and MAPK signalling pathway were over-expressed and may be specifically regulated by BipC in vivo. These results suggest that BipC mainly targets pathways related to the cellular processes which could modulate the cellular trafficking processes. The host transcriptional response exhibited remarkable differences with and without the presence of the BipC protein. Overall, the detailed picture of this study provides new insights that BipC may have evolved to efficiently manipulate host-cell pathways which is crucial in the intracellular lifecycle of B. pseudomallei.
    Matched MeSH terms: Liver/microbiology
  17. Osman AY, Saharee AA, Jesse FF, Kadir AA
    Microb Pathog, 2017 Sep;110:365-374.
    PMID: 28710016 DOI: 10.1016/j.micpath.2017.07.014
    In this study, we developed a mouse model and characterized the effects of intranasal inoculation of virulent Brucella melitensis strain 16M and its lipopolysaccharide (LPS). The effects of the exposure were compared with respective control groups. Both Brucella melitensis-infected and LPS-infected groups showed no significant clinical presentation with minor relevance in the mortality associated with the infection. In Brucella melitensis-infected group, significant histopathological changes in comparison to the LPS infected group with increase bacterial burden in the lungs, reproductive and reticuloendothelial organs were observed. However, both infected groups showed elevated levels of pro-inflammatory cytokine expression (IL-1β and IL6) and antibody production (IgM an IgG) as early as 3 days post-infection with predominance in LPS infected group. In contrast, low levels of sex related hormonal changes was recorded in both infected groups throughout the experimental period. This is the first detailed investigation comparing the infection progression and host responses in relation to the immunopathophysiological aspects in mouse model after intranasal inoculation with B. melitensis and its lipopolysaccharide. The study revealed a significant difference between infected and control groups with overlap in clinical, pathological, and immunological responses as well as sex related hormonal changes resulting from the infections.
    Matched MeSH terms: Liver/microbiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links