Displaying publications 1 - 20 of 27 in total

Abstract:
Sort:
  1. Botelho DJ, Leo BF, Massa CB, Sarkar S, Tetley TD, Chung KF, et al.
    Nanotoxicology, 2016;10(1):118-27.
    PMID: 26152688 DOI: 10.3109/17435390.2015.1038330
    Multiple studies have examined the direct cellular toxicity of silver nanoparticles (AgNPs). However, the lung is a complex biological system with multiple cell types and a lipid-rich surface fluid; therefore, organ level responses may not depend on direct cellular toxicity. We hypothesized that interaction with the lung lining is a critical determinant of organ level responses. Here, we have examined the effects of low dose intratracheal instillation of AgNPs (0.05 μg/g body weight) 20 and 110 nm diameter in size, and functionalized with citrate or polyvinylpyrrolidone. Both size and functionalization were significant factors in particle aggregation and lipid interaction in vitro. One day post-intratracheal instillation lung function was assessed, and bronchoalveolar lavage (BAL) and lung tissue collected. There were no signs of overt inflammation. There was no change in surfactant protein-B content in the BAL but there was loss of surfactant protein-D with polyvinylpyrrolidone (PVP)-stabilized particles. Mechanical impedance data demonstrated a significant increase in pulmonary elastance as compared to control, greatest with 110 nm PVP-stabilized particles. Seven days post-instillation of PVP-stabilized particles increased BAL cell counts, and reduced lung function was observed. These changes resolved by 21 days. Hence, AgNP-mediated alterations in the lung lining and mechanical function resolve by 21 days. Larger particles and PVP stabilization produce the largest disruptions. These studies demonstrate that low dose AgNPs elicit deficits in both mechanical and innate immune defense function, suggesting that organ level toxicity should be considered.
    Matched MeSH terms: Lung/drug effects
  2. Tang SP, Kuttulebbai Nainamohamed Salam S, Jaafar H, Gan SH, Muzaimi M, Sulaiman SA
    Oxid Med Cell Longev, 2017;2017:4605782.
    PMID: 28127418 DOI: 10.1155/2017/4605782
    Paraquat (PQ) is a dopaminergic neurotoxin and a well-known pneumotoxicant that exerts its toxic effect via oxidative stress-mediated cellular injuries. This study investigated the protective effects of Tualang honey against PQ-induced toxicity in the midbrain and lungs of rats. The rats were orally treated with distilled water (2 mL/kg/day), Tualang honey (1.0 g/kg/day), or ubiquinol (0.2 g/kg/day) throughout the experimental period. Two weeks after the respective treatments, the rats were injected intraperitoneally with saline (1 mL/kg/week) or PQ (10 mg/kg/week) once per week for four consecutive weeks. After four weekly exposures to PQ, the glutathione peroxidase activity and the number of tyrosine-hydroxylase immunopositive neurons in the midbrain were significantly decreased in animals from group PQ (p < 0.05). The lungs of animals from group PQ showed significantly decreased activity of superoxide dismutase and glutathione-S-transferase. Treatment with Tualang honey ameliorated the toxic effects observed in the midbrain and lungs. The beneficial effects of Tualang honey were comparable to those of ubiquinol, which was used as a positive control. These findings suggest that treatment with Tualang honey may protect against PQ-induced toxicity in the rat midbrain and lung.
    Matched MeSH terms: Lung/drug effects*
  3. Nabishah BM, Khalid BA, Morat PB, Alias AK, Zainuddin M
    J Endocrinol, 1992 Jul;134(1):73-6.
    PMID: 1323640
    The possible role of cyclic adenosine 3',5'-monophosphate (cAMP) in mediating the action of steroid hormones was investigated using the rat lung. Male rats were adrenalectomized and treated with olive oil, dexamethasone, corticosterone, deoxycorticosterone (DOC) or progesterone. At the end of 10 days, 100 micrograms isoprenaline/kg was injected intraperitoneally 5 min before the animals were killed to stimulate cAMP production. Adrenalectomy significantly decreased cAMP levels in the rat lung. Dexamethasone and corticosterone pretreatment reversed the effect of adrenalectomy whereas progesterone pretreatment but not DOC pretreatment significantly decreased lung cAMP levels. Cyclic AMP levels in normal female rats, whether pregnant or not, were not significantly different from those in male rats. We concluded that the absence of glucocorticoid, as after adrenalectomy, decreased the cAMP levels in rat lungs and that this could be reversed by either dexamethasone or corticosterone replacement. Progesterone reduced the cAMP content in rat lungs by acting as a glucocorticoid antagonist or by acting directly via progesterone receptors.
    Matched MeSH terms: Lung/drug effects
  4. Leung SSY, Parumasivam T, Nguyen A, Gengenbach T, Carter EA, Carrigy NB, et al.
    Eur J Pharm Biopharm, 2018 Jun;127:213-222.
    PMID: 29486303 DOI: 10.1016/j.ejpb.2018.02.033
    This study aimed to assess the robustness of using a spray drying approach and formulation design in producing inhalable phage powders. Two types of Pseudomonas phages, PEV2 (Podovirus) and PEV40 (Myovirus) in two formulations containing different amounts of trehalose (70% and 60%) and leucine (30% and 40%) were studied. Most of the surface of the produced powders was found to be covered in crystalline leucine. The powders were stored at 4 °C and 20 °C under vacuum. The phage stability and in vitro aerosol performance of the phage powders were examined on the day of production and after 1, 3 and 12 months of storage. A minor titer loss during production was observed for both phages (0.2-0.8 log10 pfu/ml). The storage stability of the produced phage powders was found to be phage and formulation dependent. No further reduction in titer occurred for PEV2 powders stored at 4 °C across the study. The formulation containing 30% leucine maintained the viability of PEV2 at 20 °C, while the formulation containing 40% leucine gradually lost titer over time with a storage reduction of ∼0.9 log10 pfu/ml measured after 12 months. In comparison, the PEV40 phage powders generally had a ∼ 0.5 log10 pfu/ml loss upon storage regardless of temperature. When aerosolized, the total in vitro lung doses of PEV2 were of the order of 107 pfu, except the formulation containing 40% leucine stored at 20 °C which had a lower lung dose. The PEV40 powders also had lung doses of 106-107 pfu. The results demonstrate that spray dried Myoviridae and Podoviridae phage in a simple formulation of leucine and trehalose can be successfully stored for one year at 4 °C and 20 °C with vacuum packaging.
    Matched MeSH terms: Lung/drug effects
  5. Bhat AA, Afzal M, Goyal A, Gupta G, Thapa R, Almalki WH, et al.
    Chem Biol Interact, 2024 May 01;394:111002.
    PMID: 38604395 DOI: 10.1016/j.cbi.2024.111002
    Lung inflammatory disorders are a major global health burden, impacting millions of people and raising rates of morbidity and death across many demographic groups. An industrial chemical and common environmental contaminant, formaldehyde (FA) presents serious health concerns to the respiratory system, including the onset and aggravation of lung inflammatory disorders. Epidemiological studies have shown significant associations between FA exposure levels and the incidence and severity of several respiratory diseases. FA causes inflammation in the respiratory tract via immunological activation, oxidative stress, and airway remodelling, aggravating pre-existing pulmonary inflammation and compromising lung function. Additionally, FA functions as a respiratory sensitizer, causing allergic responses and hypersensitivity pneumonitis in sensitive people. Understanding the complicated processes behind formaldehyde-induced lung inflammation is critical for directing targeted strategies aimed at minimizing environmental exposures and alleviating the burden of formaldehyde-related lung illnesses on global respiratory health. This abstract explores the intricate relationship between FA exposure and lung inflammatory diseases, including asthma, bronchitis, allergic inflammation, lung injury and pulmonary fibrosis.
    Matched MeSH terms: Lung/drug effects
  6. Arfian N, Nugraha GC, Kencana SMS, Alexandra G, Eliyani ND, Dewi KC, et al.
    Med J Malaysia, 2024 Aug;79(Suppl 4):72-76.
    PMID: 39215419
    INTRODUCTION: Inflammation caused by diabetes can damage multiple organs, including the lungs. Vitamin D (VD) has been shown to potentially reduce inflammation and boost the immune system. VD might play a role in diabetes' inflammatory response. This study aims to elucidate the evidence regarding the lung as the target organ for DM and the possible role of VD in preventing pulmonary damage progression in the diabetes rat model.

    MATERIAL AND METHODS: Thirty Sprague Dawley rats (3-monthold, 200 to 300 gm) were randomly divided into six groups, namely control (C), 4 weeks diabetes mellitus (DM1), 8 weeks DM (DM2) and three DM1 groups (VD1, VD2, and VD3) who received Vitamin D doses of 0.125, 0.25 and 0.50 μg/kg BW, respectively. After 4 weeks, daily VD was administered intraperitoneally for 30 days. Lung tissues were taken for IL- 6, MCP-1, NFKB and CD68 mRNA expression analysis and paraffin embedding. Immunohistochemical staining against CD68 and MCP-1 was conducted. Data were analysed using one-way ANOVA. p < 0.05 was considered statistically significant.

    RESULTS: DM2 group represented significantly higher IL6, MCP1, NFKB and CD68 mRNA expression than Control group (p < 0.05). Meanwhile, VD2 and VD3 groups revealed significantly lower mRNA expression of IL-6, MCP1, NFKB and CD68 than DM2 (p < 0.05). Immunostaining revealed the spreading of MCP1 protein expression in lung tissue along with macrophage infiltration in the DM2 group, which was reduced in the VD2 and the VD3 groups.

    CONCLUSION: VD shows a protective effect on diabetesinduced lung damage by regulating inflammation factors.

    Matched MeSH terms: Lung/drug effects
  7. Kardia E, Halim NSSA, Yahaya BH
    Methods Mol Biol, 2016;1516:243-255.
    PMID: 27062596 DOI: 10.1007/7651_2016_327
    Aerosol-based cell delivery technique via intratracheal is an effective route for delivering transplant cells directly into the lungs. An aerosol device known as the MicroSprayer(®) Aerosolizer is invented to transform liquid into an aerosol form, which then can be applied via intratracheal administration for drug delivery. The device produces a uniform and concentrated distribution of aerosolized liquid. Using the capability of MicroSprayer(®) Aerosolizer to transform liquid into aerosol form, our group has designed a novel method of cell delivery using an aerosol-based technique. We have successfully delivered skin-derived fibroblast cells and airway epithelial cells into the airway of a rabbit with minimum risk of cell loss and have uniformly distributed the cells into the airway. This chapter illustrates the application of aerosol device to deliver any type of cells for future treatment of lung diseases.
    Matched MeSH terms: Lung/drug effects*
  8. Adam A, Marzuki A, Abdul Rahman H, Abdul Aziz M
    Vet Hum Toxicol, 1997 Jun;39(3):147-51.
    PMID: 9167243
    The toxicities of ROUNDUP and its component chemicals, glyphosate (N-phosphonomethylglycine) and polyoxyethyleneamine (POEA), were determined at 0, 1, 3, 6 and 24 h following administration to rats. The intratracheal administration of glyphosate (0.2 g/kg), POEA (0.1 g/kg), a mixture of glyphosate (0.2 g/kg) + POEA (0.1 g/kg), or ROUNDUP (containing 0.2 g/kg glyphosate and 0.1 g/kg POEA) elicited immediate respiratory effects which were more severe and which lasted longer in the groups receiving the POEA-containing preparations than in the glyphosate alone group. By 1 h, all test preparations had caused deaths, but more occurred from the POEA-containing preparations than from glyphosate. The po administration of POEA (1 g/kg), the mixture of glyphosate (2 g/kg) +POEA (1 g/kg), or ROUNDUP (containing 2 g/kg glyphosate and 1 g/kg POEA) produced diarrhea and blood-stained weeping from noses. Death was only seen from POEA at 24 h. Glyphosate (2 g/kg po) produced transient diarrhea without nose bleeds; POEA caused diarrhea at 1 h; and the mixture of POEA + glyphosate produced diarrhea later that increased in severity with time. Bloody nose secretions were seen only with the preparations that contained POEA. No deaths, respiratory effects or bloody nose secretions occurred in controls given saline. Both POEA and glyphosate caused lung hemorrhages and lung epithelial cell damage with po or intratracheal exposures. These results indicate POEA and preparations that contained POEA were more toxic than glyphosate.
    Matched MeSH terms: Lung/drug effects
  9. Adam A, Marzuki A, Ngah WZ, Top GM
    Pharmacol. Toxicol., 1996 Dec;79(6):334-9.
    PMID: 9000262
    The hepatic and pulmonary effects of nitrofurantoin (40 mg/kg, intraperitoneally) were determined at 4 and 24 hr following its administration in mice fed for 10 weeks with a vitamin E sufficient, deficient or enriched diet. Liver glutathione (GSH) was reduced by nitrofurantoin at 4 hr but was unchanged 20 hr later. Nitrofurantoin did not affect liver glutathione peroxidase, glutathione reductase or superoxide dismutase activities. Liver catalase activities were decreased by nitrofurantoin at 4 hr. Lung GSH levels were increased whilst glutathione peroxidase activity was decreased at 4 and 24 hr. Lung glutathione reductase activity was reduced in certain groups. Nitrofurantoin did not affect lung superoxide dismutase, but catalase was decreased at 24 hr. Liver malondialdehyde levels were increased by nitrofurantoin in the vitamin E deficient group whilst lung malondialdehyde levels remained unchanged. Both liver and lung malondialdehyde levels were unaffected by vitamin E supplementation when compared to the vitamin E-sufficient group. These results suggest that nitrofurantoin (40 mg/kg) was deleterious to the liver and lung. Nitrofurantoin-induced lipid peroxidation was seen in vitamin E deficiency but an increase in dietary vitamin E content did not provide additional protection compared to the recommended daily allowance. The antioxidant activities of alpha-tocopherol and gamma-enriched tocotrienol were similar.
    Matched MeSH terms: Lung/drug effects*
  10. Ridzwan BH, Waton NG
    PMID: 1982867
    1. Oral administration of [14C]histamine induced the presence of small amounts of [14C]histamine in stomach and ileal tissues of control guinea-pigs. In contrast, much larger amounts were found after 8 h infusion. 2. Similar amounts of [14C]histamine were found in the tissues when [14C]histamine was given by intravenous infusion from 24-30 h after chlorpromazine injection.
    Matched MeSH terms: Lung/drug effects
  11. Ngan CL, Asmawi AA
    Drug Deliv Transl Res, 2018 10;8(5):1527-1544.
    PMID: 29881970 DOI: 10.1007/s13346-018-0550-4
    Inhalation therapy of lipid-based carriers has great potential in direct target towards the root of respiratory diseases, which make them superior over other drug deliveries. With the successful entry of lipid carriers into the target cells, drugs can be absorbed in a sustained release manner and yield extended medicinal effects. Nevertheless, translation of inhalation therapy from laboratory to clinic especially in drug delivery remains a key challenge to the formulators. An ideal drug vehicle should safeguard the drugs from any premature elimination, facilitate cellular uptake, and promote maximum drug absorption with negligible toxicity. Despite knowing that lung treatment can be done via systemic delivery, pulmonary administration is capable of enhancing drug retention within the lungs, while minimizing systemic toxicity with local targeting. Current inhalation therapy of lipid-based carriers can be administered either intratracheally or intranasally to reach deep lung. However, the complex dimensions of lung architectural and natural defense mechanism poise major barriers towards targeted pulmonary delivery. Delivery systems have to be engineered in a way to tackle various diseases according to their biological conditions. This review highlights on the developmental considerations of lipid-based delivery systems cater for the pulmonary intervention of different lung illnesses.
    Matched MeSH terms: Lung/drug effects
  12. Chellappan DK, Prasher P, Saravanan V, Vern Yee VS, Wen Chi WC, Wong JW, et al.
    Chem Biol Interact, 2022 Jan 05;351:109706.
    PMID: 34662570 DOI: 10.1016/j.cbi.2021.109706
    The challenges and difficulties associated with conventional drug delivery systems have led to the emergence of novel, advanced targeted drug delivery systems. Therapeutic drug delivery of proteins and peptides to the lungs is complicated owing to the large size and polar characteristics of the latter. Nevertheless, the pulmonary route has attracted great interest today among formulation scientists, as it has evolved into one of the important targeted drug delivery platforms for the delivery of peptides, and related compounds effectively to the lungs, primarily for the management and treatment of chronic lung diseases. In this review, we have discussed and summarized the current scenario and recent developments in targeted delivery of proteins and peptide-based drugs to the lungs. Moreover, we have also highlighted the advantages of pulmonary drug delivery over conventional drug delivery approaches for peptide-based drugs, in terms of efficacy, retention time and other important pharmacokinetic parameters. The review also highlights the future perspectives and the impact of targeted drug delivery on peptide-based drugs in the coming decade.
    Matched MeSH terms: Lung/drug effects
  13. Dua K, Awasthi R, Madan JR, Chellappan DK, Nalluri BN, Gupta G, et al.
    Panminerva Med, 2018 Dec;60(4):238-240.
    PMID: 29480673 DOI: 10.23736/S0031-0808.18.03428-6
    Matched MeSH terms: Lung/drug effects
  14. Parumasivam T, Ashhurst AS, Nagalingam G, Britton WJ, Chan HK
    Mol Pharm, 2017 01 03;14(1):328-335.
    PMID: 27977216 DOI: 10.1021/acs.molpharmaceut.6b00905
    Rifapentine is an anti-tuberculosis (anti-TB) drug with a prolonged half-life, but oral delivery results in low concentrations in the lungs because of its high binding (98%) to plasma proteins. We have shown that inhalation of crystalline rifapentine overcomes the limitations of oral delivery by significantly enhancing and prolonging the drug concentration in the lungs. The delivery of crystalline particles to the lungs may promote inflammation. This in vivo study characterizes the inflammatory response caused by pulmonary deposition of the rifapentine particles. The rifapentine powder was delivered to BALB/c mice by intratracheal insufflation at a dose of 20 mg/kg. The inflammatory response in the lungs and bronchoalveolar lavage (BAL) was examined at 12 h, 24 h, and 7 days post-treatment by flow cytometry and histopathology. At 12 and 24 h post-treatment, there was a significant influx of neutrophils into the lungs, and this returned to normal by day 7. A significant recruitment of macrophages occurred in the BAL at 24 h. Consistent with these findings, histopathological analysis demonstrated pulmonary vascular congestion and significant macrophage recruitment at 12 and 24 h post-treatment. In conclusion, the pulmonary delivery of crystalline rifapentine caused a transient neutrophil-associated inflammatory response in the lungs that resolved over 7 days. This observation may limit pulmonary delivery of rifapentine to once a week at a dose of 20 mg/kg or less. The effectiveness of weekly dosing with inhalable rifapentine will be assessed in murine Mycobacterium tuberculosis infection.
    Matched MeSH terms: Lung/drug effects
  15. Surien O, Ghazali AR, Masre SF
    Histol Histopathol, 2020 Oct;35(10):1159-1170.
    PMID: 32893871 DOI: 10.14670/HH-18-247
    BACKGROUND: Lung cancer is the leading cause of cancer-related deaths, and squamous cell carcinoma (SCC) is one of the most common types of lung cancer. Chemoprevention of lung cancer has gained increasing popularity as an alternative to treatment in reducing the burden of lung cancer. Pterostilbene (PS) may be developed as a chemopreventive agent due to its pharmacological activities, such as anti-proliferative, anti-inflammatory and antioxidant properties. This study aimed to investigate the effect of PS on the development of lung SCC in the mouse model.

    METHODS: A total of 24 seven-week-old female Balb/C mice were randomly categorised into four groups, including two control groups comprising the N-nitroso-trischloroethylurea (NTCU)-induced lung SCC and vehicle control (VC) groups and two treatment groups comprising the 10mg/kg PS (PS10) and 50mg/kg PS (PS50) groups. All lung organs were harvested at week 26 for histopathological analysis.

    RESULTS: All PS treatment groups showed chemopreventive activity by inhibiting the progression of lung SCC formation with PS10, resulting in mild hyperplasia, and PS50 was completely reversed in the normal bronchial epithelium layer compared with the VC group. PS treatment also reduced the expression of cytokeratin 5/6 in the bronchial epithelium layer. Both PS10 and PS50 significantly reduced the epithelium thickness compared to the NTCU group (p<0.05). PS is a potential chemopreventive agent against lung SCC growth by suppressing the progression of pre-malignant lesions and reducing the thickness of the bronchial epithelium.

    CONCLUSIONS: The underlying molecular mechanisms of PS in lung SCC should be further studied.

    Matched MeSH terms: Lung/drug effects*
  16. Mahboob T, Azlan AM, Shipton FN, Boonroumkaew P, Nor Azman NS, Sekaran SD, et al.
    Exp Parasitol, 2017 Dec;183:160-166.
    PMID: 28916456 DOI: 10.1016/j.exppara.2017.09.002
    Acanthamoeba species are pathogenic protozoa which account for amoebic keratitis, conjunctivitis and granulomatous amoebic encephalitis. These amoebae form cysts which resist drugs and more effective acanthamoebicidal agents are needed. Medicinal plants could be useful in improving the current treatment strategies for Acanthamoeba infections. In the present study, we examined the amoebicidal effects of Pericampylus glaucus (Lam.) Merr., a medicinal plant used for the treatment of conjunctivitis in Malaysia. Pathogenic Acanthamoeba triangularis were isolated from environmental water samples and treated with different concentrations of fractions obtained from Pericampylus glaucus (Lam.) Merr. as well as main constituents for 24-72 h. Chlorhexidine was used as a reference drug. Ethanol fraction of stem showed significant (p 
    Matched MeSH terms: Lung/drug effects
  17. Michaudel C, Mackowiak C, Maillet I, Fauconnier L, Akdis CA, Sokolowska M, et al.
    J Allergy Clin Immunol, 2018 09;142(3):942-958.
    PMID: 29331644 DOI: 10.1016/j.jaci.2017.11.044
    BACKGROUND: IL-33 plays a critical role in regulation of tissue homeostasis, injury, and repair. Whether IL-33 regulates neutrophil recruitment and functions independently of airways hyperresponsiveness (AHR) in the setting of ozone-induced lung injury and inflammation is unclear.

    OBJECTIVE: We sought to examine the role of the IL-33/ST2 axis in lung inflammation on acute ozone exposure in mice.

    METHODS: ST2- and Il33-deficient, IL-33 citrine reporter, and C57BL/6 (wild-type) mice underwent a single ozone exposure (1 ppm for 1 hour) in all studies. Cell recruitment in lung tissue and the bronchoalveolar space, inflammatory parameters, epithelial barrier damage, and airway hyperresponsiveness (AHR) were determined.

    RESULTS: We report that a single ozone exposure causes rapid disruption of the epithelial barrier within 1 hour, followed by a second phase of respiratory barrier injury with increased neutrophil recruitment, reactive oxygen species production, AHR, and IL-33 expression in epithelial and myeloid cells in wild-type mice. In the absence of IL-33 or IL-33 receptor/ST2, epithelial cell injury with protein leak and myeloid cell recruitment and inflammation are further increased, whereas the tight junction proteins E-cadherin and zonula occludens 1 and reactive oxygen species expression in neutrophils and AHR are diminished. ST2 neutralization recapitulated the enhanced ozone-induced neutrophilic inflammation. However, myeloid cell depletion using GR-1 antibody reduced ozone-induced lung inflammation, epithelial cell injury, and protein leak, whereas administration of recombinant mouse IL-33 reduced neutrophil recruitment in Il33-deficient mice.

    CONCLUSION: Data demonstrate that ozone causes an immediate barrier injury that precedes myeloid cell-mediated inflammatory injury under the control of the IL-33/ST2 axis. Thus IL-33/ST2 signaling is critical for maintenance of intact epithelial barrier and inflammation.

    Matched MeSH terms: Lung/drug effects
  18. Lim JCW, Sagineedu SR, Yong ACH, Sidik SM, Wong WSF, Stanslas J
    Naunyn Schmiedebergs Arch Pharmacol, 2021 Jan;394(1):95-105.
    PMID: 32840650 DOI: 10.1007/s00210-020-01966-3
    SRS27, an andrographolide analogue, had been proven to have therapeutic properties at a dose of 3 mg/kg in both in vitro and in vivo asthma models of our previous study. The present study focuses on the pharmacokinetic and toxicity profile of this compound to provide further evidence for the development of this compound as an anti-asthma agent. A simple pharmacokinetic study was performed in female BALB/c mice to measure blood plasma concentration of the compound at therapeutic dose. At a single dose of 3 mg/kg, SRS27 had a relatively short half-life but was able to achieve a concentration range of 13-19 μM that is related to its in vitro bioactivities. With regard to toxicity profile, SRS27 appears to be safe, as no histopathological changes were observed in the liver, kidneys and ovaries of SRS27-treated female BALB/c mice. In addition, there was no significant change in the mean body weight and organ weight of the animals in the SRS27-treated groups compared with the vehicle-treated control group at the end of the treatment. This fully supports the absence of any significant changes in peripheral blood leukocyte counts of SRS27-treated mice. Rewardingly, this acute toxicity study also revealed that SRS27 has a wide therapeutic window as no toxicity symptoms were detected with a dose up to 60 mg/kg daily when tested for 14 days. These results provide strong justification for further investigation of SRS27 as a potential new anti-asthma agent.
    Matched MeSH terms: Lung/drug effects
  19. Johnathan M, Muhamad SA, Gan SH, Stanslas J, Mohd Fuad WE, Hussain FA, et al.
    PLoS One, 2021;16(3):e0249091.
    PMID: 33784348 DOI: 10.1371/journal.pone.0249091
    Lignosus rhinocerotis Cooke. (L. rhinocerotis) is a medicinal mushroom traditionally used in the treatment of asthma and several other diseases by the indigenous communities in Malaysia. In this study, the effects of L. rhinocerotis on allergic airway inflammation and hyperresponsiveness were investigated. L. rhinocerotis extract (LRE) was prepared by hot water extraction using soxhlet. Airway hyperresponsiveness (AHR) study was performed in house dust mite (HDM)-induced asthma in Balb/c mice while airway inflammation study was performed in ovalbumin (OVA)-induced asthma in Sprague-Dawley rats. Treatment with different doses of LRE (125, 250 and 500 mg/kg) significantly inhibited AHR in HDM-induced mice. Treatment with LRE also significantly decreased the elevated IgE in serum, Th2 cytokines in bronchoalveolar lavage fluid and ameliorated OVA-induced histological changes in rats by attenuating leukocyte infiltration, mucus hypersecretion and goblet cell hyperplasia in the lungs. LRE also significantly reduced the number of eosinophils and neutrophils in BALF. Interestingly, a significant reduction of the FOXP3+ regulatory T lymphocytes was observed following OVA induction, but the cells were significantly elevated with LRE treatment. Subsequent analyses on gene expression revealed regulation of several important genes i.e. IL17A, ADAM33, CCL5, IL4, CCR3, CCR8, PMCH, CCL22, IFNG, CCL17, CCR4, PRG2, FCER1A, CLCA1, CHIA and Cma1 which were up-regulated following OVA induction but down-regulated following treatment with LRE. In conclusion, LRE alleviates allergy airway inflammation and hyperresponsiveness, thus suggesting its therapeutic potential as a new armamentarium against allergic asthma.
    Matched MeSH terms: Lung/drug effects
  20. Singh GD, Ganjoo M, Youssouf MS, Koul A, Sharma R, Singh S, et al.
    Food Chem Toxicol, 2009 Oct;47(10):2661-5.
    PMID: 19654032 DOI: 10.1016/j.fct.2009.07.031
    Labisia pumila (Myrsinaceae), is a popular herb among the women in Malaysia known locally as "Kacip Fatimah". Recently many nutraceutical products containing the powdered or extracted parts of the plant have become available for women's health care. However no evaluation of the effect of the repeated dosing of any herbal product of this plant had been undertaken prior to a 28-day sub-acute study presented in this report. The results showed that a dose of 50mg/kg of an aqueous extract of L. pumila corresponded to no-adverse-effect-level (NOAEL), whereas higher doses were associated with some toxicity concerns.
    Matched MeSH terms: Lung/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links