Displaying all 19 publications

Abstract:
Sort:
  1. Shi B, Guo X, Liu H, Jiang K, Liu L, Yan N, et al.
    Food Chem, 2024 Apr 16;438:137994.
    PMID: 37984001 DOI: 10.1016/j.foodchem.2023.137994
    Foods rich in carbohydrates or fats undergo the Maillard reaction during frying, which promotes the color, flavor and sensory characteristics formation. In the meanwhile, Maillard reaction intermediates and advanced glycation end products (AGEs) have a negative impact on food sensory quality and gut homeostasis. This negative effect can be influenced by food composition and other processing factors. Whole grain products are rich in polyphenols, which can capture carbonyl compounds in Maillard reaction, and reduce the production of AGEs during frying. This review summarizes the Maillard reaction production intermediates and AGEs formation mechanism in fried food and analyzes the factors affecting the sensory formation of food. In the meanwhile, the effects of Maillard reaction intermediates and AGEs on gut homeostasis were summarized. Overall, the innovative processing methods about the Maillard reaction are summarized to optimize the sensory properties of fried foods while minimizing the formation of AGEs.
    Matched MeSH terms: Maillard Reaction*
  2. Lee YY, Tang TK, Phuah ET, Alitheen NB, Tan CP, Lai OM
    J Sci Food Agric, 2017 Mar;97(5):1379-1385.
    PMID: 27801514 DOI: 10.1002/jsfa.8124
    Non-enzymatic browning has been a wide and interesting research area in the food industry, ranging from the complexity of the reaction to its applications in the food industry as well as its ever-debatable health effects. This review provides a new perspective to the Maillard reaction apart from its ubiquitous function in enhancing food flavour, taste and appearance. It focuses on the recent application of Maillard reaction products as an inexpensive and excellent source of emulsifiers as well as superior encapsulating matrices for the entrapment of bioactive compounds. Additionally, it will also discuss the latest approaches employed to perform the Maillard reaction as well as several important reaction parameters that need to be taken into consideration when conducting the Maillard reaction. © 2016 Society of Chemical Industry.
    Matched MeSH terms: Maillard Reaction*
  3. Andruszkiewicz PJ, D'Souza RN, Corno M, Kuhnert N
    Food Res Int, 2020 07;133:109164.
    PMID: 32466895 DOI: 10.1016/j.foodres.2020.109164
    Chemical transformations of Amadori compounds are responsible for the formation of aroma volatiles at the end of the Maillard reaction cascade, which in turn contributes to unique organoleptic characteristics of chocolate. A large amount of short peptides reported in fermented cocoa suggests the existence of a much larger variety of these flavor precursors than previously suspected. An HPLC-MS-MS study was performed on dried Malaysian cocoa beans to identify novel Amadori and Heyns compounds. In total, 34 species were found, including 26 previously unknown derived from di- and tripeptides. We illustrate how the structures were elucidated via tandem MS experiments, as well as present a comparative study on their relative quantities in samples coming from 11 countries of origin. There were significant differences between them, and discrimination was possible by principal component analysis based on Amadori content alone. However, the PCA separation could be a result of various post-harvest practices exerted among said countries.
    Matched MeSH terms: Maillard Reaction
  4. Amid BT, Mirhosseini H, Poorazarang H, Mortazavi SA
    Molecules, 2013 Dec 06;18(12):15110-25.
    PMID: 24322494 DOI: 10.3390/molecules181215110
    This paper deals with the conjugation of durian seed gum (DSG) with whey protein isolate (WPI) through Maillard reactions. Subsequently, the functional properties of durian seed gum in the non-conjugated (control sample) and conjugated forms were compared with several commercial gums (i.e., Arabic gum, sodium alginate, kappa carrageenan, guar gum, and pectin). The current study revealed that the conjugation of durian seed gum with whey protein isolate significantly (p < 0.05) improved its foaming properties. In this study, the conjugated durian seed gum produced the most stable foam among all samples. On the other hand, the emulsion stabilized with the conjugated durian seed gum also showed more uniform particles with a larger specific surface area than the emulsion containing the non-conjugated durian seed gum. The conjugated durian seed gum showed significant different foaming properties, specific surface area, particle uniformity and water holding capacity (WHC) as compared to the target polysaccharide gums. The conjugated durian seed gum showed more similar functional properties to Arabic gum rather than other studied gums.
    Matched MeSH terms: Maillard Reaction*
  5. Farah, D.M.H., Zaibunnisa, A.H., Misnawi
    MyJurnal
    Roasting is an important process that contribute to formation of flavour compounds in cocoa beans. Pyrazines, a by-product of Maillard reaction is one of the character impact compounds that contribute to unique cocoa flavour. Unfortunately during roasting, carcinogenic acrylamide are also produced through Maillard reaction. Therefore, this study was focussed on optimising the roasting conditions using Central Composite Design (CCD) to produce superior quality cocoa beans with high concentration of pyrazines and low concentration of acrylamide. The roasting conditions used were temperatures in the range of 110⁰C to 160⁰C and time ranging from 15 min to 40 min. Roasting conditions significantly (p
    Matched MeSH terms: Maillard Reaction
  6. Yahya H, Linforth RS, Cook DJ
    Food Chem, 2014 Feb 15;145:378-87.
    PMID: 24128492 DOI: 10.1016/j.foodchem.2013.08.046
    The roasting of barley and malt products generates colour and flavour, controlled principally by the time course of product temperature and moisture content. Samples were taken throughout the industrial manufacture of three classes of roasted product (roasted barley, crystal malt and black malt) and analysed for moisture content, colour and flavour volatiles. Despite having distinct flavour characteristics, the three products contained many compounds in common. The product concentrations through manufacture of 15 flavour compounds are used to consider the mechanisms (Maillard reaction, caramelisation, pyrolysis) by which they were formed. The use of water sprays resulted in transient increases in formation of certain compounds (e.g., 2-cyclopentene-1,4-dione) and a decrease in others (e.g., pyrrole). The study highlights rapid changes in colour and particularly flavour which occur at the end of roasting and onwards to the cooling floor. This highlights the need for commercial maltsters to ensure consistency of procedures from batch to batch.
    Matched MeSH terms: Maillard Reaction
  7. Dong L, Li Y, Chen Q, Liu Y, Qiao Z, Sang S, et al.
    Food Chem, 2023 Aug 15;417:135861.
    PMID: 36906946 DOI: 10.1016/j.foodchem.2023.135861
    Advanced glycosylation end products (AGEs) are a series of complex compounds which generate in the advanced phase of Maillard reaction, which can pose a non-negligible risk to human health. This article systematically encompasses AGEs in milk and dairy products under different processing conditions, influencing factors, inhibition mechanism and levels among the different categories of dairy products. In particular, it describes the effects of various sterilization techniques on the Maillard reaction. Different processing techniques have a significant effect on AGEs content. In addition, it clearly articulates the determination methods of AGEs and even discusses its immunometabolism via gut microbiota. It is observed that the metabolism of AGEs can affect the composition of the gut microbiota, which further has an impact on intestinal function and the gut-brain axis. This research also provides a suggestion for AGEs mitigation strategies, which are beneficial to optimize the dairy production, especially innovative processing technology application.
    Matched MeSH terms: Maillard Reaction
  8. Tan TC, AlKarkhi AF, Easa AM
    Food Chem, 2012 Oct 15;134(4):2430-6.
    PMID: 23442706 DOI: 10.1016/j.foodchem.2012.04.049
    The addition of ribose to bovine or porcine gelatine solutions followed by heating at 95 °C yielded brown solutions with different pH, colour (CIE L(*) and b(*)) and absorbance (A(420*) values. These differences were used for gelatine powder identification, differentiation and quality control. Differentiation analysis of the Maillard reaction parameters was conducted using cluster analysis (CA) and confidence intervals (CI). The potential use of the method as a quality control procedure was evaluated by using statistical process control (SPC). CA revealed that the two types of gelatine could be classified into two different groups. CI (95% confidence) revealed that the absorbance and colour values could be used as indicators for differentiation between the two types of gelatine because the intervals between the Maillard reaction parameters of the samples were far apart. The methodology demonstrated good reproducibility because it behaved predictably based on the X¯-S charts generated from the SPC charts.
    Matched MeSH terms: Maillard Reaction
  9. Goh TB, Koh RY, Yam MF, Azhar ME, Mordi MN, Mansor SM
    Food Chem, 2015 Sep 15;183:208-16.
    PMID: 25863630 DOI: 10.1016/j.foodchem.2015.03.044
    Various 6-methoxytetrahydro-β-carboline derivatives, namely BEN (6-methoxy-1-phenyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole), ANI (6-methoxy-1-(4-methoxyphenyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole), ACE (6-methoxy-1-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole) and VAN (2-methoxy-4-(6-methoxy-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-l)phenol), were prepared via the Maillard reaction using food flavours and 5-methoxytryptamine in aqueous medium and were investigated for their in vitro antioxidant and cytotoxicity properties. These derivatives were found to exhibit moderate antioxidant properties, based on a combination of DPPH, ABTS and FRAP assays. The results suggested that the Maillard reaction could be used to generate β-carboline antioxidants. It was beneficial that VAN showed the highest antioxidant activity but the least cytotoxic activities on non-tumourous cell lines of NIH/3T3, CCD18-Co and B98-5 using MTT assay. ACE, ANI and BEN showed mild toxicity at effective antioxidative concentrations derived from DPPH and ABTS assays. Furthermore, they are safer compared to 5-fluorouracil, cisplatin and betulinic acid on NIH/3T3, CCD18-Co and B98-5 cells. In conclusion, the antioxidant and cytotoxicity properties of 6-methoxytetrahydro-β-carbolines were demonstrated for the first time.
    Matched MeSH terms: Maillard Reaction
  10. Samira, S., Thuan-Chew Tan, T.C., Azhar, M.E.
    MyJurnal
    The effect of ribose-induced Maillard reaction on the physical and mechanical properties of gelatin films was investigated. Bovine gelatin solution (5 g/100 mL) containing glycerol and sorbitol (1:1) was mixed with 20% (R20), 40% ribose (R40), or 40% sucrose (S40) (weight % is based on gelatin dry weight) followed by heating (90ºC, 2 h) and oven drying to produce dried gelatin films. R20 and R40 films were brownish in color with lower light transparency, while CF (control film; without sugars) and S40 were colorless and had higher transparency. Tensile strength and Young Modulus values of the films were in the order; CF > R20 > R40 > S40, while elongation at break was in the order; R40 > S40 > R20 > CF. Water solubility and swelling percentages of the films were in the order; CF > S40 > R20 > R40, indicating the occurrence of insoluble “Maillard complexes” within R20 and R40 films. R20 and R40 films showed maximum light absorption at wavelength of 200 − 350 nm, whilst S40 and CF showed maximum absorbance at 200 − 250 nm. The addition of ribose yielded gelatin films with increased protection against UV light, even though the presence of sugars might had disrupted the inter connection of junction zones and decrease in mechanical properties. Occurrence of the Maillard reaction within R20 and R40 films could be the main reason for differences in physical and mechanical properties of films containing ribose that were formed from heated film-forming solutions.
    Matched MeSH terms: Maillard Reaction
  11. Tan, T.C., Abbas, F.M.A., Azhar, M.E.
    MyJurnal
    The addition of ribose to minced chicken or minced pork followed by heating at 95oC yielded minced
    meat with different pH, colour (CIE L*, b*) and absorbance values that can be used as indicators for species differentiation. The higher intensity of the Maillard reaction parameters in minced chicken was due to the higher protein and lysine contents, and the presence of more water-soluble proteins within the minced chicken during heating. Cluster analysis using Maillard reaction parameters showed that the two types of minced meat could be classified into two different groups. A confidence interval (95% confidence) analysis revealed that the absorbance, CIE L* values, and CIE b* values could be used as indicators for differentiation between the two types of minced meat, as the intervals between these Maillard reaction parameters for the two minced meats were far apart.
    Matched MeSH terms: Maillard Reaction
  12. Ng, A.W.R., Wong, C.W.
    MyJurnal
    Polyphenol oxidase (PPO) catalyzes the conversion of phenolic compounds into o-quinones which will lead to food browning. This phenomenon causes huge implications on food industries, as it degrades food quality over time. By combining both ammonium sulphate precipitation and gel filtration chromatography, PPO was partially purified up to 5.26-fold with 11.23% yield. The enzyme activity was 5120 EU/mL using 4-methylcatechol as substrate. Maximal PPO activity was found at 30oC, pH 5.0 for 4-methylcatechol and 40°C, pH 6.0 for catechol. The PPO showed a higher affinity towards 4-methylcatechol but higher thermal stability when reacting with catechol. The Km and Vmax values were 5.00 mM, 2000 EU/ml for 4-methylcatechol and 10.79 mM, 526.32 EU/ml for catechol. Energy for inactivation (Ea) obtained using 4-methylcatechol and catechol were 12.57 kJ/mol and 14.23 kJ/mol from respective substrates. Sodium disulfite was a better inhibitor where 79.17% of PPO inhibition was achieved. The isolation and characterization of round brinjal PPO serves as a guideline to predict the behavior of enzyme, leading to effective prevention of its browning during processing and storage.
    Matched MeSH terms: Maillard Reaction
  13. Bao L, Yang R, Diao D, Tian F, Chen Y, Zheng B, et al.
    Food Chem, 2025 Feb 01;464(Pt 1):141466.
    PMID: 39406135 DOI: 10.1016/j.foodchem.2024.141466
    This study investigated the effect of different reheating treatments on gel properties and flavor changes of surimi products. As the reheating temperature increased from 90 °C to 121 °C, the heat-induced proteolysis produced more abundant umami and sweet amino acids, which took part in the conversion of IMP to AMP, thus enhancing the taste profiles. Reheating increased the exposure of active -NH2 terminals in proteins, which boosted Maillard and Strecker reactions with carbonyl compounds originated from fatty acid oxidation, thus not only reducing the aldehydes and esters contents but also lowering the whiteness of surimi products. Reheating at 90 °C prohibited the production of warmed-over flavor (WOF) and well-preserved the textural characteristics, but high temperatures ≥100 °C were prone to generate furan as the major WOF substance and to destroy gel structures. Collectively, this study provides new insights on understanding the role of reheating on sensory properties of surimi products.
    Matched MeSH terms: Maillard Reaction
  14. Gan CY, Alkarkhi AF, Easa AM
    J Biosci Bioeng, 2009 Apr;107(4):366-72.
    PMID: 19332294 DOI: 10.1016/j.jbiosc.2008.12.007
    D-optimal design was employed to optimize the mixture of cross-linking agents formulation: microbial transglutaminase (MTGase) and ribose, and the processing parameters (i.e. incubation and heating time) in the mixture in order to obtain combined-cross-linked bovine serum albumin gels that have high gel strength, pH close to neutral and yet medium in browning. Analysis of variance (ANOVA) showed that the contribution of quadratic term to the model over the linear was significant for pH and L* value, whereas linear model was significant for gel strength. Optimization study using response surface methodology (RSM) was performed to the mixture components and process variables and the optimum conditions obtained were: MTGase of 1.34-1.43 g/100 mL, ribose of 1.07-1.16 g/100 mL, incubation time of 5 h at 40 degrees C and heating time of 3 h at 90 degrees C.
    Matched MeSH terms: Maillard Reaction
  15. Gan CY, Cheng LH, Easa AM
    J Food Sci, 2009 Mar;74(2):C141-6.
    PMID: 19323728 DOI: 10.1111/j.1750-3841.2009.01053.x
    Soy protein isolate (SPI) gels were produced using single cross-linking agents (SCLA) of microbial transglutaminase (MTG) via incubation for 5 or 24 h (SCLA-MTG). When powdered SCLA-MTG gels were heated for 2 h with ribose (R2) (2 g/100 mL), dark brown gels were formed, and these were designated as combined cross-linking agent (CCLA) gels: MTG5(R2) and MTG24(R2). The results showed that the levels of Maillard-derived browning and cross-links of MTG5(R2) and MTG24(R2) gels were significantly (P < 0.05) lower than a control gel produced without MTG (SCLA-R2) even though the percentage of ribose remaining after heating of these gels was similar, indicating that a similar amount of ribose was consumed during heating. epsilon-(gamma-glutamyl)lysine bonds formed during incubation of SPI with MTG may have reduced the free amino group of SPI to take part in the Maillard reaction; nevertheless, ribose took part in the Maillard reaction and initiated the Maillard cross-linkings within the CCLA gels.
    Matched MeSH terms: Maillard Reaction
  16. Norhayati, H., Rasma Suzielawanis, Mohd Khan AMohd Khan, A.
    Malays J Nutr, 2013;19(1):111-119.
    MyJurnal
    Introduction: A prebiotic such as inulin is a well-known functional plant food ingredient. It is capable of stimulating growth of beneficial bifidobacteria in the intestine thus protecting against intestinal infections, preventing constipation, increasing mineral absorption, reducing the incidence of colon cancer, and producing B vitamins. Inulin added to food therefore has to be stable during food processing especially against heat treatment, low pH and Maillard reaction. Methods: Newly developed dark chocolate, DC-1, containing inulin (replacing sugar component) as an added value, was stored at 18oC, 60% relative humidity and 25oC, 80% relative humidity (RH) to determine shelf life stability compared to control dark chocolate, DC-0 (with high content of sugar). Sensory evaluation (quantitative descriptive analysis), water activity (aw), microbiological content and presence of inulin after storage of the prebiotic chocolate under both conditions were evaluated to determine shelf life. Results: The DC-1 chocolate had at least 12 months of shelf life at 18oC, 60% RH with better acceptance than DC-0; moreover, it did not experience microbiological and inulin content changes. At 25oC, 80% RH, the growth of Aspergillus sp. was observed on the surface of both DC-0 and DC-1 with aw >0.50 after a 2-month storage. Conclusion: Shelf life stability of DC-1 is almost similar to DC-0.
    Matched MeSH terms: Maillard Reaction
  17. Wong FC, Chai TT, Xiao J
    Crit Rev Food Sci Nutr, 2019;59(6):947-952.
    PMID: 29787299 DOI: 10.1080/10408398.2018.1479681
    In our diets, many of the consumed foods are subjected to various forms of heating and thermal processing. Besides enhancing the taste, texture, and aroma of the foods, heating helps to sterilize and facilitate food storage. On the other hand, heating and thermal processing are frequently reported during the preparation of various traditional herbal medicines. In this review, we intend to highlight works by various research groups which reported on changes in phytochemicals and bioactivities, following thermal processing of selected plant-derived foods and herbal medicines. Relevant cases from plant-derived foods (garlic, coffee, cocoa, barley) and traditional herbal medicines (Panax ginseng, Polygonum multiforum, Aconitum carmichaelii Debeaux, Angelica sinensis Radix) will be presented in this review. Additionally, related works using pure phytochemical compounds will also be highlighted. In some of these cases, the amazing formation of new compounds were being reported. Maillard reaction could be concluded as the predominant pathway leading to the formation of new conjugates, along with other possibilities being suggested (degradation, transglycosylation, deglycosylation and dehydration). With collective efforts from all researchers, it is hoped that more details will be revealed and lead to the possible discovery of new, heat-mediated phytochemical conjugates.
    Matched MeSH terms: Maillard Reaction
  18. Ho CW, Aida WM, Maskat MY, Osman H
    Pak J Biol Sci, 2008 Apr 01;11(7):989-95.
    PMID: 18810967
    During the production of palm sugar, the palm sap (Arenga pinnata) is heated up to 150 degrees C. Besides the hydrolysis of carbohydrate to generate reducing sugars and degradation of amino acid, many physicochemical changes produced at all these temperatures, having a significant impact on the overall quality of palm sugar. In this study, changes in physico-chemical properties of the palm sap due to heat processing were investigated. Analysis of colour, soluble solid, pH, temperature, sugar and amino acid concentration was determinant. The results showed clearly that the heating process at these high temperatures was necessary to create an environment which was rich in essential precursors for subsequent reactions such as Maillard reaction. Chemical compounds that showed drastic changes in concentration were polar side chain amino acids especially glutamine, asparagine and arginine as well as sucrose and pH value. Other quality characteristics of palm sugar based on colour and soluble solids (Brix) shared an increase in concentration as a function of time.
    Matched MeSH terms: Maillard Reaction
  19. Gan CY, Cheng LH, Azahari B, Easa AM
    Int J Food Sci Nutr, 2009;60 Suppl 7:99-108.
    PMID: 19194813 DOI: 10.1080/09637480802635090
    Cross-linked soy protein isolate (SPI) gels were produced via single-treatment of SPI with microbial transglutaminase (MTG) for 5 h or 24 h, or with ribose for 2 h, or via combined-treatments of SPI with MTG followed by heating with ribose. Assessment of gel strength and solubility concluded that measures which increased protein cross-links resulted in improved gel strength; however, in most cases the digestibility and amino acid content of the gels were reduced. The combined treated gel of SPI/MTG for 24 h/ribose was more easily digested by digestive enzymes and retained higher amounts of amino acids compared with the control Maillard gels of SPI with ribose. MTG consumed lysine and glutamine and reduced the availability of amino acids for the Maillard reaction with ribose. MTG was able to preserve the nutritional value of SPI against the destructive effect of the Maillard reaction and cross-links.
    Matched MeSH terms: Maillard Reaction
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links