OBJECTIVE: The aim of this proof-of-concept study was to evaluate whether combining population pharmacokinetic and machine learning approaches could provide a more accurate prediction of the clearance of renally eliminated drugs in individual neonates.
METHODS: Six drugs that are primarily eliminated by the kidneys were selected (vancomycin, latamoxef, cefepime, azlocillin, ceftazidime, and amoxicillin) as 'proof of concept' compounds. Individual estimates of clearance obtained from population pharmacokinetic models were used as reference clearances, and diverse machine learning methods and nested cross-validation were adopted and evaluated against these reference clearances. The predictive performance of these combined methods was compared with the performance of two other predictive methods: a covariate-based maturation model and a postmenstrual age and body weight scaling model. Relative error was used to evaluate the different methods.
RESULTS: The extra tree regressor was selected as the best-fit machine learning method. Using the combined method, more than 95% of predictions for all six drugs had a relative error of < 50% and the mean relative error was reduced by an average of 44.3% and 71.3% compared with the other two predictive methods.
CONCLUSION: A combined population pharmacokinetic and machine learning approach provided improved predictions of individual clearances of renally cleared drugs in neonates. For a new patient treated in clinical practice, individual clearance can be predicted a priori using our model code combined with demographic data.
METHODS: Gentamicin, amikacin and vancomycin are thought to be predominantly excreted by the kidneys. A mixed-effects joint model of the pharmacokinetics of these drugs was developed, with a wide dispersion of weight, age and serum creatinine. A dataset created from 18 sources resulted in 27,338 drug concentrations from 9,901 patients. Body size and composition, maturation and renal function were used to describe differences in drug clearance and volume of distribution.
RESULTS: This study demonstrates that GFR is a predictor of two distinct components of renal elimination clearance: (1) GFR clearance associated with normal GFR and (2) non-GFR clearance not associated with normal GFR. All three drugs had GFR clearance estimated as a drug-specific percentage of normal GFR (gentamicin 39%, amikacin 90% and vancomycin 57%). The total clearance (sum of GFR and non-GFR clearance), standardized to 70 kg total body mass, 176 cm, male, renal function 1, was 5.58 L/h (95% confidence interval [CI] 5.50-5.69) (gentamicin), 7.77 L/h (95% CI 7.26-8.19) (amikacin) and 4.70 L/h (95% CI 4.61-4.80) (vancomycin).
CONCLUSIONS: GFR provides a physiological basis for renal drug elimination. It has been used to distinguish two elimination components. This physiological approach has been applied to describe clearance and volume of distribution from premature neonates to elderly adults with a wide dispersion of size, body composition and renal function. Dose individualization has been implemented using target concentration intervention.