Displaying all 18 publications

Abstract:
Sort:
  1. Elias MS, Ibrahim S, Samuding K, Kantasamy N, Daung JAD, Rahman SA, et al.
    Data Brief, 2019 Aug;25:103983.
    PMID: 31194012 DOI: 10.1016/j.dib.2019.103983
    This study is on the distribution of rare earth elements (REEs) concentrations in sediments collected from 113 sampling locations of Linggi River. The analysis of sediment samples was performed by Neutron Activation Analysis (NAA) and Inductively Coupled Plasma - Mass spectrometer (ICP-MS). The main compositions of Linggi river sediments were silt > sand > clay. The mean of total concentrations of REEs (ΣREE), light REEs (ΣLREE) and heavy REEs (ΣHREE) in Linggi sediment were 249, 228, and 22.0 mg/kg, respectively. The results of Linggi river sediment were normalised to several reference shale values. REEs of Linggi river sediments were comparable to MUQ reference shale values. Enrichment factors (EF) of mean values indicate Linggi River sediment can be categorised as having minor to moderate enrichment.
    Matched MeSH terms: Metals, Rare Earth
  2. Elias MS, Ibrahim S, Samuding K, Kantasamy N, Rahman SA, Hashim A
    Appl Radiat Isot, 2019 Sep;151:116-123.
    PMID: 31174051 DOI: 10.1016/j.apradiso.2019.05.038
    A study was carried out to determine the concentrations of rare earth elements (REEs) in Linggi river sediments collected from 113 sampling locations. The sediment analysis was performed by Neutron activation analysis (NAA) and Inductively coupled plasma - mass spectrometry (ICP-MS). The results of Linggi river sediment were normalized to "recent" reference shale values. The means of total concentrations of REEs (ΣREE), light REEs (ΣLREE) and heavy REEs (ΣHREE) in Linggi sediment were 241.2, 219.2, and 22.0 mg/kg, respectively, which indicates enrichment compared to ΣREE, ΣLREE and ΣHREE reference shale values. Results obtained from enrichment factors (EF) show no enrichment to moderate enrichment of Linggi sediments, indicating the sources of REEs pollution originated from natural and land-based activities. A similar pattern was observed by comparing the REEs values of Linggi sediments to other references shale values. Ce (δCe) and Eu (δEu) anomalies indicate Linggi sediments showed positive anomaly of Ce whilst negative anomaly of Eu.
    Matched MeSH terms: Metals, Rare Earth/analysis*
  3. Khan AM, Behkami S, Yusoff I, Md Zain SB, Bakar NKA, Bakar AFA, et al.
    Chemosphere, 2017 Oct;184:673-678.
    PMID: 28628904 DOI: 10.1016/j.chemosphere.2017.06.032
    Rare earth elements (REEs) are becoming significant due to their huge applications in many industries, large-scale mining and refining activities. Increasing usage of such metals pose negative environmental impacts. In this research ICP-MS has been used to analyze soil samples collected from former ex-mining areas in the depths of 0-20 cm, 21-40 cm, and 41-60 cm of residential, mining, natural, and industrial areas of Perak. Principal component analysis (PCA) revealed that soil samples taken from different mining, industrial, residential, and natural areas are separated into four clusters. It was observed that REEs were abundant in most of the samples from mining areas. Concentration of the rare elements decrease in general as we move from surface soil to deeper soils.
    Matched MeSH terms: Metals, Rare Earth/analysis*
  4. Nguyen DM, Soci C, Ooi CH
    Sci Rep, 2016;6:21083.
    PMID: 26879520 DOI: 10.1038/srep21083
    Phaseonium is a three-level Λ quantum system, in which a coherent microwave and an optical control (pump) beams can be used to actively modulate the dielectric response. Here we propose a new metamaterial structure comprising of a periodic array of triangular phaseonium metamolecules arranged as a trefoil. We present a computational study of the spatial distribution of magnetic and electric fields of the probe light and the corresponding transmission and reflection, for various parameters of the optical and microwave beams. For specific values of the probing frequencies and control fields, the phaseonium can display either metallic or dielectric optical response. We find that, in the metallic regime, the phaseonium metamaterial structure supports extremely large transmission, with optical amplification at large enough intensity of the microwave thanks to strong surface plasmon coupling; while, in the dielectric regime without microwave excitation, the transmission bandwidth can be tuned by varying the control beam intensity. Implementation of such phaseonium metamaterial structure in solid-state systems, such as patterned crystals doped with rare-earth elements or dielectric matrices embedded with quantum dots, could enable a new class of actively tunable quantum metamaterials.
    Matched MeSH terms: Metals, Rare Earth
  5. Khalik Wood, A., Zaharudin Ahmad, Noor Azhar Md. Shazili, Rosnan Yaakob, Carpenter, Roy
    MyJurnal
    Spatial and temporal variations in concentrations of several metals and isotopes in sediment cores from around Penang Island, an area with economically important biological resources off the northwest coast of peninsular Malaysia, are reported. Because of a typical, monazite rich mineralogy in surrounding drainage basins, sedimentary metal enrichment factors relative to global average materials, enrichment factors (EFs) of ˃1.0 do not always indicate significant anthropogenic metal inputs. Because of extensive metal solubilization in the hot, organic carbon rich area, EFs of < 1.0 may be observed for several metals despite significant anthropogenic contributions. Comparison of metal-Al relationships in Penang area surface sediments with those in nearby and presumed uncontaminated Strait of Malacca sediments more accurately correct for atypical regional solubilization and mineralogical effects than comparison to global average materials. Such comparisons show concentrations of Cd, Cu, Pb, Ni, Cr, As, Sb, Zn and V have changed by less than a factor of two by anthropogenic discharges. Sedimentary concentration profiles of Pb, Zn and Cu, ratioed to Sc to normalize for variations in grain size and mineralogy, have subsurface maxima suggestive of modest and recently reduced anthropogenic inputs. Mn, U, As and Sb have Sc-normalized concentration profiles clearly affected by diagenetic processes. Sc-normalized profiles of Cr, Th, Ce and Sm show only small changes with depth, confirming insignificant anthropogenic inputs and undetectable postdepositional diagenetic mobility.
    Excess ²¹⁰Pb activities and fluxes in Penang area sediments are limited by supply of this radionuclide, in contrast to sediments of both the northwestern U.S.A. and Amazon continental shelves, where they are limited by particle scavenging reactions.²¹⁰Pb activities in sediments of
    the shallow, dynamic Penang area often show erratic or unconvincing changes with depth that
    cannot be reliably modeled by assuming steady state, constant deposition rate of particles of
    uniform chemistry, mineralogy and initial unsupported ²¹⁰Pb, and that mixing is limited to a
    recognizable surface layer and resemble a diffusive process.
    Matched MeSH terms: Metals, Rare Earth
  6. Adeel M, Lee JY, Zain M, Rizwan M, Nawab A, Ahmad MA, et al.
    Environ Int, 2019 06;127:785-800.
    PMID: 31039528 DOI: 10.1016/j.envint.2019.03.022
    BACKGROUND: Rare earth elements (REEs) are gaining attention due to rapid rise of modern industries and technological developments in their usage and residual fingerprinting. Cryptic entry of REEs in the natural resources and environment is significant; therefore, life on earth is prone to their nasty effects. Scientific sectors have expressed concerns over the entry of REEs into food chains, which ultimately influences their intake and metabolism in the living organisms.

    OBJECTIVES: Extensive scientific collections and intensive look in to the latest explorations agglomerated in this document aim to depict the distribution of REEs in soil, sediments, surface waters and groundwater possibly around the globe. Furthermore, it draws attention towards potential risks of intensive industrialization and modern agriculture to the exposure of REEs, and their effects on living organisms. It also draws links of REEs usage and their footprints in natural resources with the major food chains involving plants, animals and humans.

    METHODS: Scientific literature preferably spanning over the last five years was obtained online from the MEDLINE and other sources publishing the latest studies on REEs distribution, properties, usage, cycling and intrusion in the environment and food-chains. Distribution of REEs in agricultural soils, sediments, surface and ground water was drawn on the global map, together with transport pathways of REEs and their cycling in the natural resources.

    RESULTS: Fourteen REEs (Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Th and Yb) were plighted in this study. Wide range of their concentrations has been detected in agricultural soils (<15.9-249.1 μg g-1) and in groundwater (<3.1-146.2 μg L-1) at various sites worldwide. They have strong tendency to accumulate in the human body, and thus associated with kidney stones. The REEs could also perturb the animal physiology, especially affecting the reproductive development in both terrestrial and aquatic animals. In plants, REEs might affect the germination, root and shoot development and flowering at concentration ranging from 0.4 to 150 mg kg-1.

    CONCLUSIONS: This review article precisely narrates the current status, sources, and potential effects of REEs on plants, animals, humans health. There are also a few examples where REEs have been used to benefit human health. However, still there is scarce information about threshold levels of REEs in the soil, aquatic, and terrestrial resources as well as living entities. Therefore, an aggressive effort is required for global action to generate more data on REEs. This implies we prescribe an urgent need for inter-disciplinary studies about REEs in order to identify their toxic effects on both ecosystems and organisms.

    Matched MeSH terms: Metals, Rare Earth/toxicity*; Metals, Rare Earth/chemistry*
  7. Meor Yusoff, M.S.
    MyJurnal
    The recovery of uranium from non-conventional sources has its importance in the security of nuclear fuel supply as well as producing a more value-added product to the contaminated source. In this paper, uranium is recovered both by developing a hydrothermal process as well as using the removal method. Developing hydrothermal process involves using high uranium concentrated starting material such as xenotime and thorium hydroxide waste produced from the monazite cracking process. Oxalate separation enable to produce a better uranium and thorium separation from the yttrium in xenotime as compared to the hydroxide precipitation. Also, a solvent extraction stage was included to separate the uranium from the thorium in the process using thorium hydroxide waste. The removal method involves using selective leaching for minerals with lower uranium content such as zircon. A better removal for uranium and thorium in zircon is achieved when a heat treatment process was done prior to the leaching stage. White zircon mineral was produced after this treatment and its quality meets the requirement for white ceramic opacifier and glaze.
    Matched MeSH terms: Metals, Rare Earth
  8. Wong, Jen Kuen, Lim, Kean Pah, Abdul Halim Shaari, Chen, Soo Kien, Ng, Siau Wei, Gan, Albert Han Ming
    MyJurnal
    With a view to understanding the effect of rare earth element (Ce, Pr, Nd, Sm and Gd) substitution for the La site in LaMnO3 (LMO), the samples were prepared via solid-state reaction. Structure investigation by X-ray diffraction (XRD) showed that structure transformation from trigonal (LMO) to orthorhombic (PMO, NMO, SMO and GMO) occurred when smaller trivalent rare earth element was replaced. The MnO6 octahedra were tilted and elongated or compressed, corresponding to the ionic radii of the rare earth inserted. Meanwhile, microstructure study using scanning electron microscopy (SEM) illustrated that La substitution by another rare earth element caused a reduction in grain size. This might due to the changes in enthalpy of fusion by other rare earth ions, where higher enthalpy of fusion favours formation of smaller grain size. However, CeMnO3 did not form under this preparation condition. The magnetic properties studied from the hysteresis plot taken at room temperature indicated that the substitution of La with other magnetic trivalent rare earth ions strongly weakened the magnetic strength of the system.
    Matched MeSH terms: Metals, Rare Earth
  9. Zulfadli Ahmad, Saifuddin Normanbhay
    MyJurnal
    This paper reviews the literature on uranium contamination and the removal of uranium from wastewater stemming from mining activities and nuclear power generation. After reviewing the applications of uranium in power generation, military, industry and scientific, this review discusses uranium and rare earth elements in wastewaters and the toxicity of uranium on aquatic life and humans. Further, various methods of removal of heavy metal contaminants including uranium are reviewed with special focus on the adsorption process and carbon nanotubes as a superior adsorbent.
    Matched MeSH terms: Metals, Rare Earth
  10. Amran B. Ab. Majid, Mohd Zahari Abdullah, Zaharuddin Ahmad
    The determination technique for U (238U, 235U, 234U) and Th (232Th, 230Th, 228Th) isotopes using alpha spectrometry was developed. The developed technique involved digestion, dissolution, coprecipitation, solvent extraction and electrodeposition methods. The NBS River Sediment and Rocky Flats Soil Standard Reference Materials were analysed to determine the accuracy of the technique. A good accuracy and high percentage recovery of the carrier (70 - 90%) indicated that the developed technique was suitable for U and Th isotopes determination. The technique was used to determine the U and Th concentration in monazite, xenotime and zircon samples. The results showed that the U and Th total concentrations were in the range of 21.03 to 171.25 Bq/g and 27.48 to 242.87 Bq/g respectively.
    Kaedah penguraian, pemelarutan, pemendakan bersama, ekstraksi pelarut dan pemendapan elektrik telah dikaji dan digunakan untuk mendapatkan suatu teknik yang terbaik dalam penentuan isotop uranium 234U, 235U & 238U) dan torium 228Th, 230Th & 232Th) menggunakan sistem spektrometri alfa. Kepekatan isotop U dan Th dalam bahan rujukan piawai River Sediment dan Rocky Flats Soil (NBS) telah dianalisis untuk menentukan kejituan teknik yang dibangunkan. Kajian ini mendapati kepekatan isotop yang diperolehi adalah menghampiri nilai teraku (sijil) dan peratus perolehan semula pembawa yang besar (70-90%). Ini menunjukkan teknik yang dibangunkan sesuai digunakan untuk penentuan isotop uranium dan torium. Seterusnya teknik yang dibangunkan telah digunakan untuk menentukan kandungan uranium dan torium dalam sampel monazit, xenotim dan zirkon tempatan. Kepekatan jumlah isotop uranium yang diperolehi didapati berada dalam julat 21.03 - 171.25 Bq/g manakala kepekatan jumlah isotop torium pula terletak antara 27.48 - 242.87 Bq/g.
    Matched MeSH terms: Metals, Rare Earth
  11. Khan AM, Bakar NKA, Bakar AFA, Ashraf MA
    Environ Sci Pollut Res Int, 2017 Oct;24(29):22764-22789.
    PMID: 27722986 DOI: 10.1007/s11356-016-7427-1
    Rare earths (RE), chemically uniform group of elements due to similar physicochemical behavior, are termed as lanthanides. Natural occurrence depends on the geological circumstances and has been of long interest for geologist as tools for further scientific research into the region of ores, rocks, and oceanic water. The review paper mainly focuses to provide scientific literature about rare earth elements (REEs) with potential environmental and health effects in understanding the research. This is the initial review of RE speciation and bioavailability with current initiative toward development needs and research perceptive. In this paper, we have also discussed mineralogy, extraction, geochemistry, analytical methods of rare earth elements. In this study, REEs with their transformation and vertical distribution in different environments such as fresh and seawater, sediments, soil, weathering, transport, and solubility have been reported with most recent literature along key methods of findings. Speciation and bioavailability have been discussed in detail with special emphasis on soil, plant, and aquatic ecosystems and their impacts on the environment. This review shows that REE gained more importance in last few years due to their detrimental effects on living organisms, so their speciation, bioavailability, and composition are much more important to evaluate their health risks and are discussed thoroughly as well.
    Matched MeSH terms: Metals, Rare Earth
  12. Ibrahim N
    Appl Radiat Isot, 1994 Aug;45(8):897-8.
    PMID: 8081326
    This study determines the trace metal content in Anadara Granosa L., a popular seafood amongst South-East-Asians. Using the technique of instrumental neutron activation analysis (INAA) identification has been made of the presence of 17 trace metals including elements which are classified as toxic (As, Br, Cs) and those which are rare-earths (Eu, Ce, Lu, Tb, Yb).
    Matched MeSH terms: Metals, Rare Earth/analysis
  13. Shuaibu HK, Khandaker MU, Alrefae T, Bradley DA
    Mar Pollut Bull, 2017 Jun 15;119(1):423-428.
    PMID: 28342594 DOI: 10.1016/j.marpolbul.2017.03.026
    Activity concentrations of primordial radionuclides in sand samples collected from the coastal beaches surrounding Penang Island have been measured using conventional γ-ray spectrometry, while in-situ γ-ray doses have been measured through use of a portable radiation survey meter. The mean activity concentrations for 226Ra, 232Th and 40K at different locations were found to be less than the world average values, while the Miami Bay values for 226Ra and 232Th were found to be greater, at 1023±47 and 2086±96Bqkg̶ 1 respectively. The main contributor to radionuclide enrichment in Miami Bay is the presence of monazite-rich black sands. The measured data were compared against literature values and also recommended limits set by the relevant international bodies. With the exception of Miami Bay, considered an elevated background radiation area that would benefit from regular monitoring, Penang island beach sands typically pose no significant radiological risk to the local populace and tourists visiting the leisure beaches.
    Matched MeSH terms: Metals, Rare Earth/analysis*
  14. Khandaker MU, Asaduzzaman K, Sulaiman AFB, Bradley DA, Isinkaye MO
    Mar Pollut Bull, 2018 Feb;127:654-663.
    PMID: 29475708 DOI: 10.1016/j.marpolbul.2017.12.055
    Study is made of the radioactivity in the beach sands of Langkawi island, a well-known tourist destination. Investigation is made of the relative presence of the naturally occurring radionuclide 40K and the natural-series indicator radionuclides 226Ra and 232Th, the gamma radiation exposure also being estimated. Sample quantities of black and white sand were collected for gamma ray spectrometry, yielding activity concentration in black sands of 226Ra, 232Th and 40K from 451±9 to 2411±65Bqkg-1 (mean of 1478Bqkg-1); 232±4 to 1272±35Bqkg-1 (mean of 718Bqkg-1) and 61±6 to 136±7Bqkg-1 (mean of 103Bqkg-1) respectively. Conversely, in white sands the respective values for 226Ra and 232Th were appreciably lower, at 8.3±0.5 to 13.7±1.4Bqkg-1 (mean of 9.8Bqkg-1) and 4.5±0.7 to 9.4±1.0Bqkg-1 (mean of 5.9Bqkg-1); 40K activities differed insubstantially from that in black sands, at 85±4 to 133±7Bqkg-1 with a mean of 102Bqkg-1. The mean activity concentrations of 226Ra and 232Th in black sands are comparable with that of high background areas elsewhere in the world. The heavy minerals content gives rise to elevated 226Ra and 232Th activity concentrations in all of black sand samples. Evaluation of the various radiological risk parameters points to values which in some cases could be in excess of recommendations providing for safe living and working. Statistical analysis examines correlations between the origins of the radionuclides, also identifying and classifying the radiological parameters. Present results may help to form an interest in rare-earth resources for the electronics industry, power generation and the viability of nuclear fuels cycle resources.
    Matched MeSH terms: Metals, Rare Earth/chemistry*
  15. Khan AM, Yusoff I, Bakar NKA, Bakar AFA, Alias Y
    Environ Sci Pollut Res Int, 2016 Dec;23(24):25039-25055.
    PMID: 27677993 DOI: 10.1007/s11356-016-7641-x
    A study was carried out to determine the level of rare earth elements (REEs) in water and sediment samples from ex-mining lakes and River in Kinta Valley, Perak, Malaysia. Surface water and sediments from an ex-mining lake and Kinta River water samples were analyzed for REEs by inductively coupled plasma mass spectrometry. The total concentration of REEs in the ex-mining lake water samples and sediments were found to be 3685 mg/l and 14159 mg/kg, respectively, while the total concentration of REEs in Kinta River water sample was found to be 1224 mg/l. REEs in mining lake water were found to be within 2.42 mg/l (Tb) to 46.50 mg/l (Ce), while for the Kinta River, it was 1.33 mg/l (Ho) to 29.95 mg/l (Ce). Sediment samples were also found with REEs from 9.81 mg/kg (Ho) to 765.84 mg/kg (Ce). Ce showed the highest average concentrations for mining lake (3.88 to 49.08 mg/l) and Kinta River (4.44 to 33.15 mg/l) water samples, while the concentration of La was the highest (11.59 to 771.61 mg/kg) in the mining lake sediment. Lu was shown to have the highest enrichment of REEs in ex-mining lake sediments (107.3). Multivariate statistical analyses such as factor analysis and principal component analysis indicated that REEs were associated and controlled by mixed origin, with similar contributions from anthropogenic and geogenic sources. The speciation study of REEs in ex-tin mining sediments using a modified five-stage sequential extraction procedure indicated that yttrium (Y), gadolinium (Gd), and lanthanum (La) were obtained at higher percentages from the adsorbed/exchanged/carbonate fraction. The average potential mobility of the REEs was arranged in a descending order: Yb > Gd > Y = Dy > Pr > Er > Tm > Eu > Nd > Tb > Sc > Lu > Ce > La, implying that under favorable conditions, these REEs could be released and subsequently pollute the environment.
    Matched MeSH terms: Metals, Rare Earth/analysis*
  16. Saqib NU, Adnan R, Shah I
    Environ Sci Pollut Res Int, 2016 Aug;23(16):15941-51.
    PMID: 27335012 DOI: 10.1007/s11356-016-6984-7
    Titanium dioxide (TiO2) has been considered a useful material for the treatment of wastewater due to its non-toxic character, chemical stability and excellent electrical and optical properties which contribute in its wide range of applications, particularly in environmental remediation technology. However, the wide band gap of TiO2 photocatalyst (anatase phase, 3.20 eV) limits its photocatalytic activity to the ultraviolet region of light. Besides that, the electron-hole pair recombination has been found to reduce the efficiency of the photocatalyst. To overcome these problems, tailoring of TiO2 surface with rare earth metals to improve its surface, optical and photocatalytic properties has been investigated by many researchers. The surface modifications with rare earth metals proved to enhance the efficiency of TiO2 photocatalyts by way of reducing the band gap by shifting the working wavelength to the visible region and inhibiting the anatase-to-rutile phase transformations. This review paper summarises the attempts on modification of TiO2 using rare earth metals describing their effect on the photocatalytic activities of the modified TiO2 photocatalyst.
    Matched MeSH terms: Metals, Rare Earth/chemistry*
  17. Cui M, Jang M, Kang K, Kim D, Snyder SA, Khim J
    Chemosphere, 2016 Feb;144:2081-90.
    PMID: 26583290 DOI: 10.1016/j.chemosphere.2015.10.107
    A novel and economic sequential process consisting of precipitation, adsorption, and oxidation was developed to remediate actual rare-earth (RE) wastewater containing various toxic pollutants, including radioactive species. In the precipitation step, porous air stones (PAS) containing waste oyster shell (WOS), PASWOS, was prepared and used to precipitate most heavy metals with >97% removal efficiencies. The SEM-EDS analysis revealed that PAS plays a key role in preventing the surface coating of precipitants on the surface of WOS and in releasing the dissolved species of WOS successively. For the adsorption step, a polyurethane (PU) impregnated by coal mine drainage sludge (CMDS), PUCMDS, was synthesized and applied to deplete fluoride (F), arsenic (As), uranium (U), and thorium (Th) that remained after precipitation. The continuous-mode sequential process using PAS(WOS), PU(CMDS), and ozone (O3) had 99.9-100% removal efficiencies of heavy metals, 99.3-99.9% of F and As, 95.8-99.4% of U and Th, and 92.4% of COD(Cr) for 100 days. The sequential process can treat RE wastewater economically and effectively without stirred-tank reactors, pH controller, continuous injection of chemicals, and significant sludge generation, as well as the quality of the outlet met the EPA recommended limits.
    Matched MeSH terms: Metals, Rare Earth
  18. Teng, Iyu Lin, Ismail Bahari, Muhamad Samudi Yasir
    MyJurnal
    In Malaysia, mineral processing plant is one of the Naturally Occurring Radioactive Material (NORM) processing industries controlled by the Atomic Energy Licensing Board (AELB) through the enforcement of Atomic Energy Licensing Act 1984 (Act 304). The activities generated waste which is called as TENORM wastes. TENORM wastes are mainly found in thorium hydroxide from the processing of xenotime and monazite, and iron oxide and red gypsum from the processing of ilmenite. Other TENORM wastes are scales and sludge from the oil and gas industries, tin slag produced from the smelting of tin, and ilmenite, zircon,
    and monazite produced from the processing of tin tailing (amang). The environmental and radiological monitoring program is needed to ensure that the TENORM wastes did not caused any contamination to the environment. The wastes vary in the types of samples, parameters of analysis as well as the frequency of monitoring based on license’s conditions issued by the AELB. The main objective of this study is to assess the suitability of license’s condition and the monitoring program required in oil and gas, and mineral processing
    industries. Study was done by assessing the data submitted to the AELB in order to comply with the licensing requirement. This study had found out that there are a few of license’s conditions that need to be reviewed accordingly based on the processing activity.
    Matched MeSH terms: Metals, Rare Earth
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links