Displaying publications 1 - 20 of 40 in total

Abstract:
Sort:
  1. Yasin RM, Suan KA, Meng CY
    Sex Transm Dis, 1997 May;24(5):257-60.
    PMID: 9153733
    BACKGROUND AND OBJECTIVES: The antimicrobial susceptibility pattern of Neisseria gonorrhoeae varies from one country to another and may also change with time. To monitor these variations and changes, it is desirable to have a method that is simple and reproducible. This study was undertaken to determine the in vitro susceptibility of N. gonorrhoeae to azithromycin and to assess the reliability of results obtained using E-test methodology for determination of the minimum inhibitory concentration (MIC) of azithromycin.

    STUDY DESIGN: The MICs for 135 clinical isolates of N. gonorrhoeae were determined by a modified Kirby-Bauer method recommended by the National Committee for Clinical Laboratory Standards against penicillin, cefuroxime, ceftriaxone, norfloxacin, tetracycline, kanamycin, spectinomycin, and azithromycin. The MIC of azithromycin was determined by both the E-test and agar dilution method. All tests were done simultaneously.

    RESULTS: The MIC of azithromycin to all 135 isolates ranged from 0.078 to 0.25 microgram/ml with the agar dilution method and from 0.016 to 0.50 microgram/ml with the E-test. The MIC50 and MIC90 of azithromycin were 0.064 microgram/ml and 0.125 microgram/ml, respectively, by the agar dilution method, whereas they are slightly higher by the E-test method. Seventy-six of the isolates were beta-lactamase producers and 69 were high-level tetracycline-resistant N. gonorrhoeae. There was no difference in the MIC50 and MIC90 of azithromycin in these groups of isolates. The percentage agreement within the acceptable +/-1 log2 dilution difference between MICs obtained by E-test and those obtained by the agar dilution method was 97.8%.

    CONCLUSIONS: Azithromycin has a very good in vitro antigonococcal activity, and the E-test is a reliable method to determine the MIC of azithromycin against N. gonorrhoeae.

    Matched MeSH terms: Microbial Sensitivity Tests/methods*
  2. Aziz-Ur-Rehman -, Khan SG, Bokhari TH, Anjum F, Akhter N, Rasool S, et al.
    Pak J Pharm Sci, 2020 Mar;33(2(Supplementary)):871-876.
    PMID: 32863264
    A novel series of 5-(3-Chlorophenyl)-2-((N-(substituted)-2-acetamoyl)sulfanyl)-1,3,4-oxadiazole derivatives was efficiently synthesized and screened for antibacterial, hemolytic and thrombolytic activities. The molecule 7c remained the best inhibitor of all selected bacterial strains and furthermore possessed very low toxicity, 8.52±0.31. Compound 7a 7b and 7f showed very good thrombolytic activity relative to Streptokinase employed as reference drug. In addition to low toxicity and moderately good thrombolytic activity, the synthesized compounds possessed excellent to moderate antibacterial activity, relative to ciprofloxacin. All compounds especially 7b and 7f can be consider for further clinical studies and might be helpful in synthesis of new drugs for treatment of cardiovascular diseases.
    Matched MeSH terms: Microbial Sensitivity Tests/methods
  3. Ciraj AM, Vinod P, Sreejith G, Rajani K
    Indian J Pathol Microbiol, 2009 1 13;52(1):49-51.
    PMID: 19136780
    INTRODUCTION: Clinical failure of clindamycin therapy has been reported due to multiple mechanisms that confer resistance to macrolide, lincosamide and streptogramin antibiotics. This study was undertaken to detect the presence of inducible clindamycin resistance among clinical isolates of staphylococci.

    MATERIALS AND METHODS: The detection of inducible clindamycin resistance was performed by D-test using erythromycin and clindamycin discs as per CDC guidelines.

    RESULTS: Among the 244 clinical isolates of staphylococci studied, 32 (13.1%) showed inducible clindamycin resistance and belonged to the MLSBi phenotype. Among the MLS B i phenotypes, 10 isolates were methicillin-resistant Staphylococcus aureus (38.4% of the total MRSA), 16 were methicillin-sensitive Staphylococcus aureus (12.9% of the total MSSA) and 6 were coagulase-negative staphylococci (6.3% of the total CONS).

    CONCLUSION: The test for inducible resistance to clindamycin should be included in the routine antibiotic susceptibility testing, as it will help in guiding therapy.

    Matched MeSH terms: Microbial Sensitivity Tests/methods
  4. Mohd Faizal MN, Ismail N, M S Eldeen I, Mariam T
    Pak J Biol Sci, 2021 Jan;24(5):579-587.
    PMID: 34486333 DOI: 10.3923/pjbs.2021.579.587
    <b>Background and Objective:</b> Horseshoe crabs are widely used in both traditional and modern pharmaceutical applications. Most of the previous studies on horseshoe crabs focused on their blood which contains hemolymph and amoebocyte lysate. This study aimed to determine the potential antibacterial and antifouling properties of different extracts from the carapace and the book gills of <i>Carcinoscorpius rotundicauda</i>. <b>Materials and Methods:</b> The crude extracts were subjected to the bioactivity tests using the disc-diffusion and the inhibition of biofilm-formation measurement assays, for both the antibacterial and antifouling activities respectively. <b>Results:</b> The results obtained indicated that the carapace extracts had stronger antibacterial and antifouling effects compared to the book gills extracts. Extracts obtained from the male displayed more activity compared to the extracts from the female with a few exceptions. Methanol and acetone carapace crude extracts showed the best overall performance. A sterol compound was isolated from the carapace acetone extracts of the male of <i>C. rotundicauda</i>. However, the compound did not display strong activity compared to the crude extract. The compound might be contributing to the observed activity with other components through a synergistic effect. <b>Conclusion:</b> The presence of antibacterial and antifouling activities in the carapace and book gills extracts could be added to the complexity of the defence mechanisms of horseshoe crabs. The results of this study, therefore, may contribute to the knowledge of the defence mechanisms of <i>C. rotundicauda</i>. Further research is needed to determine the bioactivities of other parts of the animal and to explore their potential applications.
    Matched MeSH terms: Microbial Sensitivity Tests/methods
  5. Rameshkumar MR, Arunagirinathan N, Swathirajan CR, Vignesh R, Balakrishnan P, Solomon SS
    Indian J Med Res, 2018 09;148(3):341-344.
    PMID: 30425226 DOI: 10.4103/ijmr.IJMR_730_17
    Matched MeSH terms: Microbial Sensitivity Tests/methods
  6. Sule A, Ahmed QU, Latip J, Samah OA, Omar MN, Umar A, et al.
    Pharm Biol, 2012 Jul;50(7):850-6.
    PMID: 22587518 DOI: 10.3109/13880209.2011.641021
    Andrographis paniculata Nees. (Acanthaceae) is an annual herbaceous plant widely cultivated in southern Asia, China, and Europe. It is used in the treatment of skin infections in India, China, and Malaysia by folk medicine practitioners.
    Matched MeSH terms: Microbial Sensitivity Tests/methods
  7. Othman M, Loh HS, Wiart C, Khoo TJ, Lim KH, Ting KN
    J Microbiol Methods, 2011 Feb;84(2):161-6.
    PMID: 21094190 DOI: 10.1016/j.mimet.2010.11.008
    The search for antimicrobial agents from plants has been a growing interest in the last few decades. However, results generated from many of these studies cannot be directly compared due to the absence of standardization in particular antimicrobial methods employed. The need for established methods with consistent results for the evaluation of antimicrobial activities from plant extracts has been proposed by many researchers. Nevertheless, there are still many studies reported in the literature describing different methodologies. The aim of this study was to find optimal methods to give consistent quantitative antimicrobial results for studying plant extracts. Three different agar-based assays (pour plate disc diffusion (PPDD), streak plate disc diffusion (SPDD) and well-in agar (WA)) and one broth-based (turbidometric (TB)) assay were used in this study. Extracts from two plant species (Duabanga grandiflora and Acalypha wilkesiana) were tested on two bacterial species, namely Escherichia coli and Staphylococcus aureus. Amongst the agar-based assays, PPDD produced the most reproducible results. TB was able to show the inhibitory effects of the test samples on the growth kinetic of the bacteria including plant extracts with low polarity. We propose that both agar- (i.e PPDD) and broth-based assays should be employed when assessing the antimicrobial activity of plant crude extracts.
    Matched MeSH terms: Microbial Sensitivity Tests/methods*
  8. Karunakaran R, Puthucheary SD
    Scand. J. Infect. Dis., 2007;39(10):858-61.
    PMID: 17852912
    The treatment of melioidosis currently involves the use of antimicrobials such as ceftazidime, trimethoprim-sulfamethoxazole, amoxicillin-clavulanate and doxycycline. Evaluation of other antimicrobials with activity against the organism continues to be pursued, however, as the causative organism, B. pseudomallei, may not always be susceptible to the above antimicrobials. This study aimed to test the susceptibility of Malaysian isolates of B. pseudomallei against imipenem, meropenem, ertapenem, moxifloxacin and azithromycin. 80 previously stocked clinical isolates collected between 1978 and 2003 from the UMMC, Kuala Lumpur were tested for in vitro susceptibility to these antimicrobials using the E-test minimum inhibitory concentration method. 100% of isolates were sensitive to imipenem and meropenem, 97.5% were sensitive to trimethoprim-sulfamethozaxole, 37.5% to moxifloxacin, and only a minority was sensitive to ertapenem (7.5%). Using breakpoints for Staphylococcus and Haemophilus, 5.0%-6.3% of isolates were sensitive to azithromycin. In conclusion, our findings support the in vitro efficacy of imipenem, meropenem and trimethoprim-sulfamethoxazole against B. pseudomallei. Moxifloxacin, ertapenem and azithromycin cannot be recommended for the treatment of melioidosis; however, further studies are needed to test the efficacy of azithromycin in combination with quinolones.
    Matched MeSH terms: Microbial Sensitivity Tests/methods
  9. Mohd Nasir MD, Parasakthi N
    Malays J Pathol, 2004 Jun;26(1):29-33.
    PMID: 16190104
    The increasing prevalence of penicillin-resistant Streptococuus pneumoniae urges for fast and accurate susceptibility testing methods. This study evaluated the comparability of three commonly used techniques; disk diffusion, E-test and agar dilution, to detect penicillin susceptibility in clinical isolates of S. pneumoniae. Fifty pneumococcal isolates, obtained from patients at the University of Malaya Medical Centre, were selected to include both penicillin-susceptible strains and those that had decreased susceptibility (resistant and intermediate) to penicillin. The minimum inhibitory concentration (MIC) values of penicillin to serve as the reference was determined by the agar dilution method in which, based on the MIC breakpoints recommended by the National Committee for Clinical Laboratory Standards (NCCLS), 27 strains had decreased susceptibility to penicillin with 17 strains resistant and 10 intermediate. Comparing to the agar dilution method, oxacillin disk diffusion test detected all strains with decreased penicillin susceptibility as such while E-test showed a close agreement of susceptibility (92%) of the isolates to penicillin. This confirmed that oxacillin is a good screening test for S. pneumoniae isolates with decreased susceptibility to penicillin while E-test is very reliable for rapid and accurate detection of penicillin susceptibility.
    Matched MeSH terms: Microbial Sensitivity Tests/methods*
  10. Hoe CH, Yasin RM, Koh YT, Thong KL
    J Appl Microbiol, 2005;99(1):133-40.
    PMID: 15960673
    Antimicrobial resistance of Shigella sonnei from Malaysia was determined and subtyping was carried by pulsed-field gel electrophoresis (PFGE) to assess the extent of genetic diversity of these strains.
    Matched MeSH terms: Microbial Sensitivity Tests/methods
  11. Jiamsakul A, Chaiwarith R, Durier N, Sirivichayakul S, Kiertiburanakul S, Van Den Eede P, et al.
    J Med Virol, 2016 Feb;88(2):234-43.
    PMID: 26147742 DOI: 10.1002/jmv.24320
    HIV drug resistance assessments and interpretations can be obtained from genotyping (GT), virtual phenotyping (VP) and laboratory-based phenotyping (PT). We compared resistance calls obtained from GT and VP with those from PT (GT-PT and VP-PT) among CRF01_AE and subtype B HIV-1 infected patients. GT predictions were obtained from the Stanford HIV database. VP and PT were obtained from Janssen Diagnostics BVBA's vircoType(TM) HIV-1 and Antivirogram®, respectively. With PT assumed as the "gold standard," the area under the curve (AUC) and the Bland-Altman plot were used to assess the level of agreement in resistance interpretations. A total of 80 CRF01_AE samples from Asia and 100 subtype B from Janssen Diagnostics BVBA's database were analysed. CRF01_AE showed discordances ranging from 3 to 27 samples for GT-PT and 1 to 20 samples for VP-PT. The GT-PT and VP-PT AUCs were 0.76-0.97 and 0.81-0.99, respectively. Subtype B showed 3-61 discordances for GT-PT and 2-75 discordances for VP-PT. The AUCs ranged from 0.55 to 0.95 for GT-PT and 0.55 to 0.97 for VP-PT. Didanosine had the highest proportion of discordances and/or AUC in all comparisons. The patient with the largest didanosine FC difference in each subtype harboured Q151M mutation. Overall, GT and VP predictions for CRF01_AE performed significantly better than subtype B for three NRTIs. Although discrepancies exist, GT and VP resistance interpretations in HIV-1 CRF01_AE strains were highly robust in comparison with the gold-standard PT.
    Matched MeSH terms: Microbial Sensitivity Tests/methods
  12. Bakeri SA, Yasin RM, Koh YT, Puthucheary SD, Thong KL
    J Appl Microbiol, 2003;95(4):773-80.
    PMID: 12969291
    The study was undertaken to determine clonal relationship and genetic diversity of the human strains of Salmonella enterica serovar Enteritidis isolated from 1995 to 2002 from different parts of Malaysia.
    Matched MeSH terms: Microbial Sensitivity Tests/methods
  13. Ali A, Kumar R, Khan A, Khan AU
    Int J Biol Macromol, 2020 Oct 01;160:212-223.
    PMID: 32464197 DOI: 10.1016/j.ijbiomac.2020.05.172
    Carbapenem resistance in Gram-negative pathogens has become a global concern for health workers worldwide. In one of our earlier studies, a Klebsiella pneumoniae-carbapenemase-2 producing strain was induced with meropenem to explore differentially expressed proteins under induced and uninduced conditions. There is, LysM domain BON family protein, was found over 12-fold expressed under the induced state. A hypothesis was proposed that LysM domain protein might have an affinity towards carbapenem antibiotics making them unavailable to bind with their target. Hence, we initiated a study to understand the binding mode of carbapenem with LysM domain protein. MICs of imipenem and meropenem against LysM clone were increased by several folds as compared to NP-6 clinical strain as well as DH5 α (PET-28a KPC-2) clone. This study further revealed a strong binding of both antibiotics to LysM domain protein. Molecular simulation studies of LysM domain protein with meropenem and imipenem for 80 ns has also showed stable structure. We concluded that overexpressed LysM domain under induced condition interacted with carbapenems, leading to enhanced resistance as proved by high MIC values. Hence, the study proved the proposed hypothesis that the LysM domain plays a significant role in the putative mechanism of antibiotics resistance.
    Matched MeSH terms: Microbial Sensitivity Tests/methods
  14. Lin YW, Abdul Rahim N, Zhao J, Han ML, Yu HH, Wickremasinghe H, et al.
    PMID: 30670431 DOI: 10.1128/AAC.02176-18
    Polymyxins are used as a last-line therapy against multidrug-resistant (MDR) New Delhi metallo-β-lactamase (NDM)-producing Klebsiella pneumoniae However, polymyxin resistance can emerge with monotherapy; therefore, novel strategies are urgently needed to minimize the resistance and maintain their clinical utility. This study aimed to investigate the pharmacodynamics of polymyxin B in combination with the antiretroviral drug zidovudine against K. pneumoniae Three isolates were evaluated in static time-kill studies (0 to 64 mg/liter) over 48 h. An in vitro one-compartment pharmacokinetic/pharmacodynamic (PK/PD) model (IVM) was used to simulate humanized dosage regimens of polymyxin B (4 mg/liter as continuous infusion) and zidovudine (as bolus dose thrice daily to achieve maximum concentration of drug in broth [Cmax] of 6 mg/liter) against K. pneumoniae BM1 over 72 h. The antimicrobial synergy of the combination was further evaluated in a murine thigh infection model against K. pneumoniae 02. In the static time-kill studies, polymyxin B monotherapy produced rapid and extensive killing against all three isolates followed by extensive regrowth, whereas zidovudine produced modest killing followed by significant regrowth at 24 h. Polymyxin B in combination with zidovudine significantly enhanced the antimicrobial activity (≥4 log10 CFU/ml) and minimized bacterial regrowth. In the IVM, the combination was synergistic and the total bacterial loads were below the limit of detection for up to 72 h. In the murine thigh infection model, the bacterial burden at 24 h in the combination group was ≥3 log10 CFU/thigh lower than each monotherapy against K. pneumoniae 02. Overall, the polymyxin B-zidovudine combination demonstrates superior antimicrobial efficacy and minimized emergence of resistance to polymyxins.
    Matched MeSH terms: Microbial Sensitivity Tests/methods
  15. Far FE, Al-Obaidi MMJ, Desa MNM
    J Mycol Med, 2018 Sep;28(3):486-491.
    PMID: 29753721 DOI: 10.1016/j.mycmed.2018.04.007
    BACKGROUND: Malassezia furfur is lipodependent yeast like fungus that causes superficial mycoses such as pityriasis versicolor and dandruff. Nevertheless, there are no standard reference methods to perform susceptibility test of Malassezia species yet.

    AIMS: Therefore, in this study, we evaluated the optimized culture medium for growth of this lipophilic yeast using modified leeming-Notman agar and colorimetric resazurin microtiter assay to assess antimycotic activity of fluconazole against M. furfur.

    RESULTS: The result showed that these assays were more adjustable for M. furfur with reliable and reproducible MIC end-point, by confirming antimycotic activity of fluconazole with MIC of 2μg/ml.

    CONCLUSION: We conclude that this method is considered as the rapid and effective susceptibility testing of M. furfur with fluconazole antifungal activity.

    Matched MeSH terms: Microbial Sensitivity Tests/methods
  16. Vamsi K, Siddiqui F
    J Contemp Dent Pract, 2018 Jul 01;19(7):824-829.
    PMID: 30066686
    AIM: To study the antimicrobial effect of chlorhexidine diacetate (CHX-D)-modified type II glass ionomer cement (GIC) against the two predominant deep caries microorganisms, namely Lactobacillus casei and Actinomyces viscosus.

    MATERIALS AND METHODS: An experimental GIC (ex-GIC) was prepared by mixing CHX-D powder with the powder of type II GIC to obtain 1% (w/w) concentration of CHX-D in the GIC. Antibacterial activity of this ex-GIC was tested against L. casei and A. viscosus using the agar diffusion method. The ex-GIC specimens were tested in their unset and set forms for each bacterium. For the unset group, specimens were placed in each agar plate immediately after manipulation and for the set group, specimens were placed in each agar plate, 1 hour after manipulation. The inhibition zones on the agar plate were recorded in millimeters immediately on placement of the specimen in the agar plate and after 48 hours. The reading was recorded and statistically analyzed for significant difference.

    RESULTS: Mann-Whitney U test showed statistically significant difference in the inhibition zones produced by ex-GIC against L. casei and A. viscosus when both were compared in unset (p-value = 0.002) and set (p-value = 0.031) groups. For both the groups, the zone of inhibition against L. casei was greater. Though the unset group recorded wider zone of inhibition, the difference was not significant when compared with the respective set group. This was true for both the bacterial groups.

    CONCLUSION: The 1% CHX-D-modified type II GIC showed antibacterial property against L. casei and A. viscosus and significantly higher activity against L. casei.

    CLINICAL SIGNIFICANCE: Addition of 1% CHX-D to type II GIC showed evidence of antibacterial activity against organisms found in deep carious lesion and therefore may exhibit superior antimicrobial efficiency when used as an intermediate therapeutic restoration in deep cavities.

    Matched MeSH terms: Microbial Sensitivity Tests/methods
  17. Rehman A, Siddiqa A, Abbasi MA, Siddiqui SZ, Khan SG, Rasool S, et al.
    Pak J Pharm Sci, 2018 Sep;31(5):1783-1790.
    PMID: 30150171
    A number of novel 5-substituted-2-((6-bromo-3,4-methylenedioxybenzyl)thio)-1,3,4-Oxadiazole derivatives (6a-l) have been synthesized to evaluate their antibacterial activity. Using aryl/aralkyl carboxylic acids (1a-l) as precursors, 5-substituted-1,3,4-Oxadiazol-2-thiols (4a-l) were yielded in good amounts. The derivatives, 4a-l, were subjected to electrophilic substitution reaction on stirring with 6-bromo-3,4-methylenedioxybenzyl chloride (5) in DMF to synthesize the required compounds. All the synthesized molecules were well characterized by IR, 1H-NMR, 13C-NMR and EIMS spectral data and evaluated for antibacterial activity against some bacterial strains of Gram-bacteria. The molecule, 6d, demonstrated the best activity among all the synthesized molecules exhibiting weak to moderate inhibition potential.
    Matched MeSH terms: Microbial Sensitivity Tests/methods
  18. Yap JKY, Tan SYY, Tang SQ, Thien VK, Chan EWL
    Microb Drug Resist, 2021 Feb;27(2):234-240.
    PMID: 32589487 DOI: 10.1089/mdr.2020.0178
    Aims: Currently, limited antibiotics are available to treat methicillin-resistant Staphylococcus aureus (MRSA) infections. One approach is the use of adjuvants in antibiotic therapy. 1,4-Naphthoquinones are naturally occurring alkaloids shown to have antibacterial properties. The objective of this study is to investigate the synergy between 1,4-naphthoquinone and selected β-lactam antibiotics and to evaluate the potential use of 1,4-naphthoquinone as an adjuvant in antibiotic treatment against MRSA infections. Methods: The antibacterial activity of 1,4-naphthoquinone and plumbagin was tested against nine pathogenic bacterial strains using the microdilution broth method. The interactions between 1,4-naphthoquinone and three antibiotics (cefuroxime, cefotaxime, and imipenem) were estimated by calculating the fractional inhibitory concentration of the combination. Results: The compounds 1,4-naphthoquinone and plumbagin exhibited a broad range of bacteriostatic and bactericidal effects against both Gram-positive and Gram-negative bacteria. The interaction between 1,4-naphthoquinone and imipenem, cefuroxime, and cefotaxime was synergistic against methicillin-sensitive Staphylococcus aureus and MRSA clinical strains. Against ATCC-cultured MRSA, a synergistic effect was observed between 1,4-naphthoquinone and cefotaxime. However, combination with imipenem only produced an additive effect, and an antagonistic action was observed between 1,4-naphthoquinone and cefuroxime. Conclusions: Although individually less potent than common antibiotics, 1,4-naphthoquinone acts synergistically with imipenem, cefuroxime, and cefotaxime against MRSA clinical strains and could potentially be used in adjuvant-antibiotic therapy against multidrug resistant bacteria.
    Matched MeSH terms: Microbial Sensitivity Tests/methods
  19. Salhi N, Mohammed Saghir SA, Terzi V, Brahmi I, Ghedairi N, Bissati S
    Biomed Res Int, 2017;2017:7526291.
    PMID: 29226147 DOI: 10.1155/2017/7526291
    Aim: This study investigated the antifungal properties of aqueous extracts obtained from indigenous plants that grow spontaneously in the Northern Sahara of Algeria. The activities of these plants in controlling two fungal species that belong to Fusarium genus were evaluated in an in vitro assay.

    Materials and Methods: Fresh aerial parts of four plant species (Artemisia herba alba, Cotula cinerea, Asphodelus tenuifolius, and Euphorbia guyoniana) were collected for the preparation of aqueous extracts. Two levels of dilution (10% and 20%) of the pure extracts were evaluated against Fusarium graminearum and Fusarium sporotrichioides.

    Results: The results of this study revealed that the A. herba alba, C. cinerea, A. tenuifolius, and E. guyoniana aqueous extracts are effective at both concentrations of 10% and 20% for the Fusarium mycelia growth inhibition. In particular, A. tenuifolius extract is effective against F. graminearum, whereas F. sporotrichioides mycelium growth is strongly affected by the E. guyoniana 20% extract. The phytochemical characterization of the compositions of the aqueous extracts has revealed that the presence of some chemical compounds (tannins, flavonoids, saponins, steroids, and alkaloids) is likely to be responsible for the antifungal activities sought.

    Conclusion: The antifungal properties of A. herba alba, C. cinerea, A. tenuifolius, and E. guyoniana make these plants of potential interest for the control of fungi affecting both wheat yield and safety.

    Matched MeSH terms: Microbial Sensitivity Tests/methods
  20. Mohd Yusof H, Abdul Rahman N, Mohamad R, Zaidan UH, Samsudin AA
    Sci Rep, 2020 Nov 17;10(1):19996.
    PMID: 33204003 DOI: 10.1038/s41598-020-76402-w
    This study aims to utilize the cell-biomass (CB) and supernatant (CFS) of zinc-tolerant Lactobacillus plantarum TA4 as a prospective nanofactory to synthesize ZnO NPs. The surface plasmon resonance for the biosynthesized ZnO NPs-CFS and ZnO NPs-CB was 349 nm and 351 nm, respectively, thereby confirming the formation of ZnO NPs. The FTIR analysis revealed the presence of proteins, carboxyl, and hydroxyl groups on the surfaces of both the biosynthesized ZnO NPs that act as reducing and stabilizing agents. The DLS analysis revealed that the poly-dispersity indexes was less than 0.4 for both ZnO NPs. In addition, the HR-TEM micrographs of the biosynthesized ZnO NPs revealed a flower-like pattern for ZnO NPs-CFS and an irregular shape for ZnO NPs-CB with particles size of 291.1 and 191.8 nm, respectively. In this study, the biosynthesized ZnO NPs exhibited antibacterial activity against pathogenic bacteria in a concentration-dependent manner and showed biocompatibility with the Vero cell line at specific concentrations. Overall, CFS and CB of L. plantarum TA4 can potentially be used as a nanofactory for the biological synthesis of ZnO NPs.
    Matched MeSH terms: Microbial Sensitivity Tests/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links