Displaying publications 1 - 20 of 35 in total

Abstract:
Sort:
  1. Lim SYM, Loo JSE, Alshagga M, Alshawsh MA, Ong CE, Pan Y
    Int J Toxicol, 2022;41(5):355-366.
    PMID: 35658727 DOI: 10.1177/10915818221103790
    Cathine is the stable form of cathinone, the major active compound found in khat (Catha edulis Forsk) plant. Khat was found to inhibit major phase I drug metabolizing cytochrome P450 (CYP) enzyme activities in vitro and in vivo. With the upsurge of khat consumption and the potential use of cathine to combat obesity, efforts should be channelled into understanding potential cathine-drug interactions, which have been rather limited. The present study aimed to assess CYPs activity and inhibition by cathine in a high-throughput in vitro fluorescence-based enzyme assay and molecular docking analysis to identify how cathine interacts within various CYPs' active sites. The half maximal inhibitory concentration (IC50) values of cathine determined for CYP2A6 and CYP3A4 were 80 and 90 μM, while CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP2J2 and CYP3A5 showed no significant inhibition. Furthermore, in Ki analysis, the Lineweaver-Burk plots depicted non-competitive mixed inhibition of cathine on both CYP2A6 and CYP3A4 with Ki value of 63 and 100 μM, respectively. Cathine showed negligible time-dependent inhibition on CYPs. Further, molecular docking studies showed that cathine was bound to CYP2A6 via hydrophobic, hydrogen and π-stacking interactions and formed hydrophobic and hydrogen bonds with active site residues in CYP3A4. Both molecular docking prediction and in vitro outcome are in agreement, granting more detailed insights for predicting CYPs metabolism besides the possible cathine-drug interactions. Cathine-drug interactions may occur with concomitant consumption of khat or cathine-containing products with medications metabolized by CYP2A6 and CYP3A4.
    Matched MeSH terms: Microsomes, Liver/metabolism
  2. Ng ML, Rajna A, Khalid BA
    Clin Chem, 1987 Dec;33(12):2286-8.
    PMID: 3690847
    A combined enzyme immunoassay (micro-ELISA) technique was established for measuring autoantibodies against thyroglobulin and thyroid microsome, involving the immuno-dot blot technique. Thyroglobulin and thyroid microsome antigens (1 g/L each) prepared from normal thyroids were spotted separately onto nitrocellulose membrane filter discs. Results by this method and those by immunofluorescence correlated well. The percentages of confirmed positives were 30% and 48% and the negatives were 58% and 46% (n = 50) for thyroglobulin and microsome, respectively. Testing these samples by gelatin agglutination gave a high percentage of false positives (up to 20%, n = 128) and hemagglutination testing yielded a high percentage of false negatives (up to 20%, n = 45). The titer of autoantibodies by the micro-ELISA technique was greater than by agglutination. This technique is highly specific and sensitive.
    Matched MeSH terms: Microsomes/immunology*
  3. Sim SM, Back DJ, Breckenridge AM
    Br J Clin Pharmacol, 1991 Jul;32(1):17-21.
    PMID: 1909542
    1. Zidovudine (3'-azido-3'-deoxythymidine; AZT) is the drug of proven efficacy available for the treatment of patients with AIDS or ARC. It is eliminated mainly by hepatic glucuronidation. Therefore, interference with this metabolic pathway may lead to enhancement of AZT effect or to increased toxicity of the drug. We have examined the effect of a number of drugs which themselves undergo glucuronidation on AZT conjugation by human liver microsomes in vitro. 2. AZT glucuronidation followed Michaelis-Menten kinetics. The apparent Km and Vmax values (mean +/- s.d., n = 5), were 2.60 +/- 0.52 mM and 68.0 +/- 23.4 nmol h-1 mg-1, respectively, as determined from Eadie-Hofstee plots. 3. Dideoxyinosine, sulphanilamide and paracetamol were essentially non-inhibitory at concentrations up to 10 mM (4 times the concentration of AZT in the incubation). The most marked inhibitory effects were seen with indomethacin, naproxen, chloramphenicol, probenecid and ethinyloestradiol, with enzyme activity decreased by 97.7, 94.9, 88.7, 83.4% and 79.0%, respectively, at a concentration of 10 mM. Other compounds producing some inhibition of AZT conjugation were oxazepam, salicylic acid and acetylsalicylic acid. 4. Further studies are necessary to characterise the inhibition observed but the method described enables a screen of potentially important drug interactions to be carried out.
    Matched MeSH terms: Microsomes, Liver/drug effects*; Microsomes, Liver/enzymology; Microsomes, Liver/metabolism
  4. Kwan TK, Foong SL, Lim YT, Gower DB
    Biochem. Mol. Biol. Int., 1993 Nov;31(4):733-43.
    PMID: 8298502
    Using the rapid gas chromatographic steroid profiling technique, a number of metabolites of pregnenolone have been separated and quantified after incubation of this steroid with adult rat and neonatal porcine testicular homogenates. It was shown that the 5-ene-3 beta-hydroxy- and the 4-en-3-oxosteroid pathways for androgen biosynthesis were operating in both species, although the former pathway appeared to be more important in porcine testis. This tissue was characterised by the formation of several odorous, and pheromonal, 16-androstenes, which were quantitatively more important than the androgens. Three non-steroidal anti-inflammatory drugs (NSAIDS) caused dose-related inhibition of androgen and 16-androstene biosynthesis when co-incubated with pregnenolone. The order of potency was flurbiprofen > indomethacin > > > aspirin. The possibility that the NSAIDS may interfere with cytochrome P-450 is discussed, since several steroid-transforming enzymes, known to be dependent on this cytochrome for their activity, were markedly inhibited.
    Matched MeSH terms: Microsomes/drug effects; Microsomes/metabolism
  5. Kwan TK, Lim YT, Gower DB
    Biochem Soc Trans, 1992 May;20(2):232S.
    PMID: 1397603
    Matched MeSH terms: Microsomes/drug effects; Microsomes/metabolism*
  6. Ahmad W, Kumolosasi E, Jantan I, Bukhari SN, Jasamai M
    Chem Biol Drug Des, 2014 Jun;83(6):670-81.
    PMID: 24406103 DOI: 10.1111/cbdd.12280
    Arachidonic acid and its metabolites have generated a heightened interest due to their significant role in inflammation. Inhibiting the enzymes involved in arachidonic acid metabolism has been considered as the synergistic anti-inflammatory effect. A series of novel curcumin diarylpentanoid analogues were synthesized and evaluated for their inhibitory effects on activity of secretory phospholipase A2 , cyclooxygenases, soybean lipo-oxygenase as well as microsomal prostaglandin E synthase-1. Among the curcumin analogues, compounds 3, 6, 9, 12, and 17 exhibited strong inhibition of secretory phospholipase A2 activity, with IC50 values ranging from 5.89 to 11.02 μm. Seven curcumin analogues 1, 3, 6, 7, 9, 11, and 12 showed inhibition of cyclooxygenases-2 with IC50 values in the range of 46.11 to 94.86 μm, which were lower than that of curcumin. Compounds 3, 6, 7, 12, and 17 showed strong inhibition of lipo-oxygenase enzyme activity. Preliminary screening of diarylpentanoid curcumin analogues for microsomal prostaglandin E synthase-1 activity revealed that four diarylpentanoid curcumin analogues 5, 6, 7, and 13 demonstrated higher inhibition of microsomal prostaglandin E synthase-1 activity with IC50 ranging from 2.41 to 4.48 μm, which was less than that of curcumin. The present results suggest that some of these diarylpentanoid analogues were able to inhibit the activity of these enzymes. This raises the possibility that diarylpentanoid analogues of curcumin might serve as useful starting point for the design of improved anti-inflammatory agents.
    Matched MeSH terms: Microsomes/drug effects*; Microsomes/enzymology
  7. Chung LY
    Phytother Res, 2008 Apr;22(4):493-9.
    PMID: 18338748 DOI: 10.1002/ptr.2350
    A standardized mixture of Chinese herbs, Zemaphyte taken orally as a daily decoction has been shown to be effective in the treatment of atopic eczema. This study showed that Zemaphyte is an efficient antioxidant, being capable of scavenging both superoxide and hydroxyl, and preventing peroxidation of biological membranes. It does not degrade hydrogen peroxide directly, but instead most likely forms a Zemaphyte-hydrogen peroxide complex. The complexed hydrogen peroxide can then be degraded in the presence of catalase to form oxygen and water. It is conceivable that Zemaphyte may contribute to the down-regulation of the activities of cells implicated in atopic eczema through its antioxidant activities.
    Matched MeSH terms: Microsomes, Liver/drug effects*; Microsomes, Liver/metabolism
  8. Kwan TK, Gower DB
    Biochem. Int., 1988 Apr;16(4):629-37.
    PMID: 3390195
    Capillary gas chromatographic 'steroid profiling' has been utilised to separate and quantify the metabolites (derivatized as methyloximes and/or trimethylsilyl ethers) formed from pregnenolone after incubation with rat testicular microsomes. A wide range of steroid metabolites was found, indicating that both the 5-ene and 4-ene pathways of testosterone biosynthesis were operating, as well as 16 alpha-hydroxylation, 20 beta-reduction and the formation of several C19 steroids (the 16-androstenes). At the concentration used, Metyrapone markedly inhibited 16 alpha- and 17-hydroxylation and side-chain cleavage of 17-hydroxylated C21 steroids. 16-Androstene production was also markedly inhibited and the formation of other metabolites was affected to lesser extents. Oxytocin abolished the formation of all C21 and C19 metabolites of pregnenolone.
    Matched MeSH terms: Microsomes/drug effects; Microsomes/metabolism
  9. Aziz MY, Hoffmann KJ, Ashton M
    J Pharm Sci, 2018 05;107(5):1461-1467.
    PMID: 29352982 DOI: 10.1016/j.xphs.2018.01.009
    The potential of the antimalarial piperaquine and its metabolites to inhibit CYP3A was investigated in pooled human liver microsomes. CYP3A activity was measured by liquid chromatography-tandem mass spectrometry as the rate of 1'-hydroxymidazolam formation. Piperaquine was found to be a reversible, potent inhibitor of CYP3A with the following parameter estimates (%CV): IC50 = 0.76 μM (29), Ki = 0.68 μM (29). In addition, piperaquine acted as a time-dependent inhibitor with IC50 declining to 0.32 μM (28) during 30-min pre-incubation. Time-dependent inhibitor estimates were kinact = 0.024 min-1 (30) and KI = 1.63 μM (17). Metabolite M2 was a highly potent reversible inhibitor with estimated IC50 and Ki values of 0.057 μM (17) and 0.043 μM (3), respectively. M1 and M5 metabolites did not show any inhibitory properties within the limits of assay used. Average (95th percentile) simulated in vivo areas under the curve of midazolam increased 2.2-fold (3.7-fold) on the third which is the last day of piperaquine dosing, whereas for its metabolite M2, areas under the curve of midazolam increased 7.7-fold (13-fold).
    Matched MeSH terms: Microsomes, Liver/drug effects*; Microsomes, Liver/metabolism
  10. Pertiwi AK, Kwan TK, Gower DB
    J Steroid Biochem Mol Biol, 2002 Aug;81(4-5):363-7.
    PMID: 12361726
    The intracellular movements of pregnenolone in rat testes were investigated. Whole testes were incubated in the presence or absence of pregnenolone (2.5mM) in the medium for 120 min (in some studies 30, 60, and 90 min). The testes were homogenised, subcellular fractions prepared and analysed in quadruplicate for steroid content by gas chromatography-mass spectrometry with selected ion monitoring. Quantification of pregnenolone and 11 of its metabolites, obtained from non-incubated whole testes, provided values for endogenous amounts. Pregnenolone was the only steroid of quantitative importance found initially in the mitochondrial fraction but was subsequently found in the microsomal fraction, where metabolism occurred. Identification and quantification of metabolites indicated that both classical pathways for testosterone production were operating, with the 4-en-3-oxosteroid pathway predominating. By 120 min, virtually all pregnenolone metabolites, including pregnenolone itself, were found in the cytosol, consistent with an overall movement from mitochondria to endoplasmic reticulum to cytosol.
    Matched MeSH terms: Microsomes/metabolism
  11. Kwan TK, Poh CH, Perumal R, Gower DB
    Biochem. Int., 1988 Nov;17(5):885-94.
    PMID: 3254165
    The metabolism of pregnenolone in subcellular fractions of the testes of the macaque (Macaca fascicularis) has been studied using capillary gas chromatography to characterize and quantify the metabolites, after their conversion into the O-methyloxime and/or trimethylsilyl ether derivatives. The microsomal incubations yielded the greatest quantities of metabolites, with lesser amounts in the mitochondrial fraction. The cytosolic fraction contained no significant quantity of metabolites after incubation, except for 5alpha-androst-16-en-3 beta-ol. This, and other odorous androst-16-enes, found in the microsomal fraction, are of particular interest in the context of animal communication because of their possible pheromonal role. Pregnenolone was converted into androst-5-ene-3 beta,17 beta-diol, androst-4-ene-3,17-dione and testosterone, suggesting that both classical pathways for testosterone synthesis were operating. Testosterone was further converted into 5 alpha-reduced androstanediols, especially in the microsomal fraction.
    Matched MeSH terms: Microsomes/metabolism
  12. Azila N, Kuppusamy UR, Ong KK
    Biochem. Int., 1989 Nov;19(5):1077-85.
    PMID: 2561441
    Cyclic AMP phosphodiesterase (PDE) activity was assayed in the plasma membrane, mitochondrial and microsomal fractions of rat brain. The specific activity of the enzyme was highest in the plasma membrane fraction followed by mitochondrial and then the microsomal fraction. Phosphodiesterase activity of all three fractions was reduced after pretreatment with lecithinase C (PCase) from Clostridium perfringens but less markedly affected by the pretreatment with sphingomyelinase (SMase) from human placenta. The PDE activity of the plasma membrane fraction was more sensitive to PCase treatment compared with the other two particulate fractions, which showed only a slight loss of activity. Temperature seemed to affect PDE activity of the plasma membrane. The enzyme was quite stable at 30 degrees C but its activity dropped by approximately 46% at 37 degrees C after 90 min of incubation. Pretreatment of the plasma membrane at 30 degrees C with PCase at a concentration of more than 5 U caused a marked loss of PDE activity and the decrease in activity reached a plateau at concentrations above 10 U.
    Matched MeSH terms: Microsomes/metabolism
  13. Moroi K, Sato T
    Biochem Pharmacol, 1975 Aug 15;24(16):1517-21.
    PMID: 8
    Matched MeSH terms: Microsomes, Liver/enzymology*
  14. Muhammad H, Gomes-Carneiro MR, Poça KS, De-Oliveira AC, Afzan A, Sulaiman SA, et al.
    J Ethnopharmacol, 2011 Jan 27;133(2):647-53.
    PMID: 21044879 DOI: 10.1016/j.jep.2010.10.055
    Orthosiphon stamineus, Benth, also known as Misai Kucing in Malaysia and Java tea in Indonesia, is traditionally used in Southeastern Asia to treat kidney dysfunctions, diabetes, gout and several other illnesses. Recent studies of Orthosiphon stamineus pharmacological profile have revealed antioxidant properties and other potentially useful biological activities thereby lending some scientific support to its use in folk medicine. So far the genotoxicity of Orthosiphon stamineus extracts has not been evaluated. In this study the genotoxic potential of Orthosiphon stamineus aqueous extract was investigated by the Salmonella/microsome mutation assay and the mouse bone marrow micronucleus test.
    Matched MeSH terms: Microsomes, Liver/drug effects; Microsomes, Liver/enzymology
  15. Nesaretnam K, Devasagayam TP, Singh BB, Basiron Y
    Biochem. Mol. Biol. Int., 1993 May;30(1):159-67.
    PMID: 8358328
    The effect of palm oil, a widely used vegetable oil, rich in tocotrienols, on peroxidation potential of rat liver was examined. Long-term feeding of rats with palm oil as one of the dietary components significantly reduced the peroxidation potential of hepatic mitochondria and microsomes. As compared to hepatic mitochondria isolated from rats fed control or corn oil-rich diet, those from palm oil-fed group showed significantly less susceptibility to peroxidation induced by ascorbate and NADPH. However, in microsomes, only NADPH-induced lipid peroxidation was significantly reduced in rats fed palm oil rich-diet. Though the accumulation of thiobarbituric acid reactive substances during ascorbate-induced lipid peroxidation in mitochondria from rats fed corn oil-rich diet supplemented with tocotrienol-rich fraction (TRF) of palm oil was similar to that of control rats, the initial rate of peroxidation was much slower than those from control or corn oil fed diets. Our in vitro studies as well as analyses of co-factors related to peroxidation potential indicated that the observed decrease in palm oil-fed rats may be due to increased amount of antioxidants in terms of tocotrienol as well as decrease in the availability of substrates for peroxidation.
    Matched MeSH terms: Microsomes, Liver/drug effects*; Microsomes, Liver/metabolism
  16. Abdullah NH, Ismail S
    Molecules, 2018 Oct 19;23(10).
    PMID: 30347696 DOI: 10.3390/molecules23102696
    The co-use of conventional drug and herbal medicines may lead to herb-drug interaction via modulation of drug-metabolizing enzymes (DMEs) by herbal constituents. UDP-glucuronosyltransferases (UGTs) catalyzing glucuronidation are the major metabolic enzymes of Phase II DMEs. The in vitro inhibitory effect of several herbal constituents on one of the most important UGT isoforms, UGT2B7, in human liver microsomes (HLM) and rat liver microsomes (RLM) was investigated. Zidovudine (ZDV) was used as the probe substrate to determine UGT2B7 activity. The intrinsic clearance (Vmax/Km) of ZDV in HLM is 1.65 µL/mg/min which is ten times greater than in RLM, which is 0.16 µL/mg/min. Andrographolide, kaempferol-3-rutinoside, mitragynine and zerumbone inhibited ZDV glucuronidation in HLM with IC50 values of 6.18 ± 1.27, 18.56 ± 8.62, 8.11 ± 4.48 and 4.57 ± 0.23 µM, respectively, hence, herb-drug interactions are possible if andrographolide, kaempferol-3-rutinoside, mitragynine and zerumbone are taken together with drugs that are highly metabolized by UGT2B7. Meanwhile, only mitragynine and zerumbone inhibited ZDV glucuronidation in RLM with IC50 values of 51.20 ± 5.95 μM and 8.14 ± 2.12 µM, respectively, indicating a difference between the human and rat microsomal model so caution must be exercised when extrapolating inhibitory metabolic data from rats to humans.
    Matched MeSH terms: Microsomes, Liver/drug effects*; Microsomes, Liver/enzymology
  17. Asmariah Ahmad, Safura Salik, Yap Wei Boon, Ahmad Rohi Ghazali, Noorhisham Tan Kofli
    Jurnal Sains Kesihatan Malaysia, 2018;16(101):23-26.
    MyJurnal
    Mutagenic and antimutagenic activities of lactic acid bacteria (LAB) Lactobacillus plantarum isolated from the local fermented durian (tempoyak) was determined by Ames test (Salmonella/microsome mutagenicity assay). Our study also involved pre-incubation assay against Salmonella typhimurium TA 98 and TA 100 bacterial strain in the presence and absence of metabolic activator S9 system. It was found that the L. plantarum showed no mutagenic activity on both S. typhimurium strain TA 98 and TA 100 in the presence and absence of metabolic activator. Significant antimutagenic activity (p < 0.05) was observed in both cell-free supernatant and bacterial cell suspension of L. plantarum as compared to the mutagenicity induced by 2-Aminoanthracene in the presence of metabolic activator. Meanwhile, in the absence of metabolic activator, only the bacterial cells of L. plantarum showed antimutagenicity acitivity against Sodium Azide and 2-Nitrofluorene. In conclusion, L. plantarum could play a vital role as chemopreventive agent by binding to mutagens and suppressing mutagenesis. Thus, L. plantarum could be consider as a good candidate for functional food development as a supplement product to prevent development of colon cancer.
    Matched MeSH terms: Microsomes
  18. Liew KF, Chan KL, Lee CY
    Eur J Med Chem, 2015 Apr 13;94:195-210.
    PMID: 25768702 DOI: 10.1016/j.ejmech.2015.02.055
    A series of novel aurones bearing amine and carbamate functionalities at various positions (rings A and/or B) of the scaffold was synthesized and evaluated for their acetylcholinesterase and butyrylcholinesterase inhibitory activities. Structure-activity relationship study disclosed several potent submicromolar acetylcholinesterase inhibitors (AChEIs) particularly aurones bearing piperidine and pyrrolidine moieties at ring A or ring B. Bulky groups particularly methoxyls, and carbamate to a lesser extent, at either rings were also prominently featured in these AChEI aurones as exemplified by the trimethoxyaurone 4-3. The active aurones exhibited a lower butyrylcholinesterase inhibition. A 3'-chloroaurone 6-3 originally designed to improve the metabolic stability of the scaffold was the most potent of the series. Molecular docking simulations showed these AChEI aurones to adopt favourable binding modes within the active site gorge of the Torpedo californica AChE (TcAChE) including an unusual chlorine-π interaction by the chlorine of 6-3 to establish additional bondings to hydrophobic residues of TcAChE. Evaluation of the potent aurones for their blood-brain barrier (BBB) permeability and metabolic stability using PAMPA-BBB assay and in vitro rat liver microsomes (RLM) identified 4-3 as an aurone with an optimal combination of high passive BBB permeability and moderate CYP450 metabolic stability. LC-MS identification of a mono-hydroxylated metabolite found in the RLM incubation of 4-3 provided an impetus for further improvement of the compound. Thus, 4-3, discovered within this present series is a promising, drug-like lead for the development of the aurones as potential multipotent agents for Alzheimer's disease.
    Matched MeSH terms: Microsomes, Liver/drug effects
  19. Koh CK, Hew FL, Chiu CL
    Ann Acad Med Singap, 2000 Jul;29(4):528-30.
    PMID: 11056786
    INTRODUCTION: The association of chronic urticaria and thyroid autoimmunity is not well recognised and the potential use of thyroxine in the treatment of chronic urticaria in patients with thyroid autoimmunity is even less well known.

    CLINICAL PICTURE: We report a case of chronic urticaria in an euthyroid patient with evidence of significantly elevated levels of thyroglobulin and microsomal antibodies.

    TREATMENT AND OUTCOME: Treatment with thyroxine has brought about clinical remission of the chronic urticaria but no change in the thyroid antibody levels could be demonstrated.

    CONCLUSION: Patients with chronic urticaria should be screened for evidence of thyroid autoimmunity. A closely monitored trial of thyroxine therapy for those who have thyroid autoimmunity can be rewarding.

    Matched MeSH terms: Microsomes/immunology*
  20. Obeng S, Kamble SH, Reeves ME, Restrepo LF, Patel A, Behnke M, et al.
    J Med Chem, 2020 01 09;63(1):433-439.
    PMID: 31834797 DOI: 10.1021/acs.jmedchem.9b01465
    Selected indole-based kratom alkaloids were evaluated for their opioid and adrenergic receptor binding and functional effects, in vivo antinociceptive effects, plasma protein binding, and metabolic stability. Mitragynine, the major alkaloid in Mitragyna speciosa (kratom), had higher affinity at opioid receptors than at adrenergic receptors while the vice versa was observed for corynantheidine. The observed polypharmacology of kratom alkaloids may support its utilization to treat opioid use disorder and withdrawal.
    Matched MeSH terms: Microsomes, Liver/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links