METHODS: Sprague-Dawley rats were divided into four groups: Sham, AMI, AMI treated with PBS (AMI-PBS), and AMI treated with pirfenidone (AMI-PFD) (n=12 each). AMI was induced via coronary artery ligation. The AMI-PFD and AMI-PBS groups received pirfenidone and PBS for 14 days, respectively. Cardiac function, fibrosis, serum cytokines, collagen and elastin content, and their ratios were assessed. Cardiac fibroblasts (CFs) from neonatal rats were categorized into control, hypoxia-induced (LO), LO+PBS, and LO+PFD groups. ELISA measured inflammatory factors, and RT-PCR analyzed collagen and elastin gene expression.
RESULTS: The AMI-PFD group showed improved cardiac function and reduced serum interleukin-1β (IL-1β), IL-6, and transforming growth factor-β (TGF-β). Type I and III collagen decreased by 22.6 % (P=0.0441) and 34.4 % (P=0.0427), respectively, while elastin content increased by 79.4 % (P=0.0126). E/COLI and E/COLIII ratios rose by 81.1 % (P=0.0026) and 88.1 % (P=0.0006). CFs in the LO+PFD group exhibited decreased IL-1β, IL-6, TGF-β, type I and III collagen, with increased elastin mRNA, enhancing the elastin/collagen ratio.
CONCLUSION: Pirfenidone enhances cardiac function by augmenting the early elastin/collagen ratio post-AMI.
CASE SUMMARY: We report a case of late presenting MI, where on initial echocardiogram had what was thought to be an intraventricular clot. However, upon further evaluation, the patient actually had an intramyocardial haematoma, with the supporting echocardiographic features to distinguish it from typical left ventricular (LV) clot. While this prevented the patient from receiving otherwise unnecessary anticoagulation, this diagnosis also put him at a much higher risk of mortality. Despite exhaustive medical and supportive management, death as consequence of pump failure occurred after 2 weeks.
DISCUSSION: This report highlights the features seen on echocardiography which support the diagnosis of an intramyocardial haematoma rather than an LV clot, notably the various acoustic densities, a well visualized myocardial dissecting tear leading into a neocavity filled with blood, and an independent endocardial layer seen above the haematoma. Based on this report, we wish to highlight the importance of differentiating intramyocardial haematomas from intraventricular clots in patients with recent MI.
METHODS: In this prospective multicentre study, consecutive CKD patients (n = 154) undergoing routine clinical cardiac magnetic resonance (CMR) imaging were compared with patients with hypertensive (HTN, n = 163) and hypertrophic cardiomyopathy (HCM, n = 158), and normotensive controls (n = 133).
RESULTS: Native T1 was significantly higher in all patient groups, whereas native T2 in CKD only (p