METHODOLOGY: A cross-sectional observational study was performed on patients diagnosed with MetS and compared to normal controls. All patients underwent ophthalmic and anthropometric examination, serological and biochemical blood investigations; and ocular imaging using spectral-domain optical coherence tomography. Patients with ocular pathology were excluded. Unpaired t-test was used to compare mean thickness between the two groups. One-way ANOVA with Bonferroni correction for multiple comparisons was used to compare mean thickness between different tertiles of MetS parameters, and a generalized estimating equation was used to correct for inter-eye correlation and to assess association between mean thickness and covariates.
RESULTS: Two hundred and forty-eight eyes from 124 participants (1:1 ratio of MetS patients to controls) were included. Age ranged between 30 to 50 years old, and mean age was 40 ± 6.6 years. RNFL thickness was lower globally (93.6 ± 9.9 μm vs 99.0 ± 9.3, p<0.001) and in the inferior (124.5 ± 17.5 μm vs 131.0 ± 16.4 μm, p = 0.002), superior (117.2 ± 16.0 μm vs 126.3 ± 14.4 μm, p<0.001) and temporal (65.5 ± 10.2 μm vs 69.5 ± 9.8, p = 0.002) sectors in MetS patients compared to controls. Only the central (237.0 ± 14.0 μm vs 243.6 ± 18.0 μm, p = 0.002) and inferior parafoveal (307.8 ± 20.9 vs 314.6 ± 14.6, p = 0.004) area of the macula was significantly thinner. The inferior RNFL sector had the most difference (mean difference = 9.1 μm). The Generalized Estimating Equation found that, after adjusting for age, diastolic blood pressure, BMI, HDL and obesity; the number of MetS components and elevated triglyceride levels were independent risk factors for reduced thickness in global RNFL (β = -4.4, 95% CI = -7.29 to -1.5, p = 0.003) and inferior parafovea (β = -6.85, 95% CI = -11.58 to -2.13, p = 0.004) thickness respectively.
CONCLUSION: RNFL thinning was seen more than macula thinning in MetS patients, suggesting RNFL susceptibility to neurodegeneration than the macula. A higher number of metabolic components and elevated triglyceride levels were independent risk factors for retinal thinning in this group of patients.
METHODS: Analyses were conducted post hoc of this 24-month, phase III, double-blind study, in which RRMS patients were randomized (1:1:1) to once daily oral fingolimod 0.5 mg, 1.25 mg or placebo. The key outcomes were the association between baseline RNFLT and baseline clinical characteristics and clinical/imaging outcomes up to 24 months. Change of RNFLT with fingolimod versus placebo within 24 months and time to retinal nerve fiber layer (RNFL) thinning were evaluated.
RESULTS: Altogether 885 patients were included. At baseline, lower RNFLT was correlated with higher Expanded Disability Status Scale score (r = -1.085, p = 0.018), lower brain volume (r = 0.025, p = 0.006) and deep gray matter volume (r = 0.731, p
METHODS: This retrospective analysis was of handheld SD OCT images obtained under a prospective research protocol in children who had established XLRS diagnosis based on genetic testing or clinical history. Three OCT graders performed standardized qualitative and quantitative assessment of retinal volume scans, which were divided into foveal, parafoveal, and extrafoveal regions. Visual acuity data were obtained when possible.
RESULTS: Spectral domain OCT images were available of both eyes in 8 pediatric patients with ages 7 months to 10 years. The schisis cavities involved inner nuclear layer in over 90% (15/16) of eyes in all 3 regions. Retinal nerve fiber and ganglion cell layer involvement was present only in the extrafoveal region in 63% (10/16) eyes and outer nuclear and plexiform layer in few others. In 7 children followed over 2 months to 15 months, the location of schisis remained consistent. Central foveal thickness decreased from the baseline to final available visit in 4/6 eyes. Ellipsoid zone disruption seemed to accompany lower visual acuity in 1/4 eyes.
CONCLUSION: Early in life, the SD OCT findings in XLRS demonstrate differences in schisis location in fovea-parafoveal versus extrafoveal region, possible association between poor visual acuity and degree of ellipsoid zone disruption and decrease in central foveal thickness over time in this group. Furthermore, they illustrates that the pattern of XLRS in adults is already present in very young children, and unlike in older children and adults, those presenting with earlier disease may have a more aggressive course. Further studies in this early age group may provide more insights into treatment and prevention of progressive visual impairment in children with XLRS.
DESIGN: Dental pulp from extracted human permanent teeth was processed for fluorescence immunohistochemistry. Ten asymptomatic (normal) and 10 symptomatic (symptoms associated with pulpitis) teeth were used in this study. Nerve fibers were identified by immunostaining for a marker, protein gene product 9.5, and the cells were counterstained with 4',6-diamidino-2-phenylindole. An anti-TRPV4 antibody was used to trace TRPV4 expression.
RESULTS: TRPV4 expression was co-localized with the nerve fiber marker. Immunoreactivity for TRPV4 was more intense (p
OBJECTIVE: To determine whether retinal nerve fiber layer (RNFL) measurement can be used to detect glaucoma in uveitic eyes with elevated intraocular pressure (IOP).
DESIGN, SETTING, AND PARTICIPANTS: Comparative case series of RNFL measurement using optical coherence tomography performed from May 1, 2010, through October 31, 2012, at a tertiary referral center. We assigned 536 eyes with uveitis (309 patients) in the following groups: normal contralateral eyes with unilateral uveitis (n = 72), normotensive uveitis (Uv-N) (n = 143), raised IOP and normal optic disc and/or visual field (Uv-H) (n = 233), and raised IOP and glaucomatous disc and/or visual field (Uv-G) (n = 88).
EXPOSURES: Eyes with uveitis and elevated IOP (>21 mm Hg) on at least 2 occasions.
MAIN OUTCOMES AND MEASURES: Comparison of RNFL values between groups of eyes and correlation with clinical data; risk factors for raised IOP, glaucoma, and RNFL thinning.
RESULTS: Mean (SD) global RNFL was thicker in Uv-N (106.4 [21.4] µm) compared with control (96.0 [9.0] µm; P
METHODS: 1H-MRS utilising the Single-Voxel Spectroscopy (SVS) technique was performed using a 3.0Tesla MRI on 45 optic radiations (15 from healthy subjects, 15 from mild glaucoma patients, and 15 from severe glaucoma patients). A standardised Volume of Interest (VOI) of 20 × 20 × 20 mm was placed in the region of optic radiation. Mild and severe glaucoma patients were categorised based on the Hodapp-Parrish-Anderson (HPA) classification. Mean and multiple group comparisons for metabolite concentration and metabolite concentration ratio between glaucoma grades and healthy subjects were obtained using one-way ANOVA.
RESULTS: The metabolite concentration and metabolite concentration ratio between the optic radiations of glaucoma patients and healthy subjects did not demonstrate any significant difference (p > 0.05).
CONCLUSION: Our findings show no significant alteration of metabolite concentration associated with neurodegeneration that could be measured by single-voxel 1H-MRS in optic radiation among glaucoma patients.
KEY POINTS: • Glaucoma disease has a neurodegenerative component. • Metabolite changes have been observed in the neurodegenerative process in the brain. • Using SVS, no metabolite changes in optic radiation were attributed to glaucoma.
Methods: A total of 3843 participants (7,020 healthy eyes) were enrolled from the Singapore Epidemiology of Eye Diseases (SEED) study, a population-based study composing of three major ethnic groups-Malay, Indian, and Chinese-in Singapore. Ocular examinations were performed, and spectral-domain optical coherence tomography (SD-OCT) was used to measure circumpapillary RNFL thickness. We selected 35 independent glaucoma-associated genetic loci for analysis. An linear regression model was conducted to determine the association of these variants with circumpapillary RNFL, assuming an additive genetic model. We conducted association analysis in each of the three ethnic groups, followed by a meta-analysis of them.
Results: The mean age of the included participants was 59.4 ± 8.9 years, and the mean RFNL thickesss is 92.3 ± 11.2 µm. In the meta-analyses, of the 35 glacuoma loci, we found that only SIX6 was significantly associated with reduction in global RNFL thickness (rs33912345; β = -1.116 um per risk allele, P = 1.64E-05), and the effect size was larger in the inferior RNFL quadrant (β = -2.015 µm, P = 2.9E-6), and superior RNFL quadrant (β = -1.646 µm, P = 6.54E-5). The SIX6 association were consistently observed across all three ethnic groups. Other than RNFL, we also found several genetic varaints associated with vertical cuo-to-disc ratio (ATOH7, CDKN2B-AS1, and TGFBR3-CDC7), rim area (SIX6 and CDKN2B-AS1), and disc area (SIX6, ATOH7, and TGFBR3-CDC7). The association of SIX6 rs33912345 with NRFL thickness remained similar after further adjusting for disc area and 3 other disc parameter associated SNPs (ATOH7, CDKN2B-AS1, and TGFBR3-CDC7).
Conclusions: Of the 35 glaucoma identified risk loci, only SIX6 is significantly and independently associated with thinner RNFL. Our study further supports the involvement of SIX6 with RNFL thickness and pathogensis of glaucoma.
DESIGN: Retrospective study.
METHODS: Based on the mean deviation (MD) of the Humphrey Field Analyzer (HFA), the 152 subjects were categorized into mild (MD > - 6 dB, 100), moderate (MD - 6 to - 12 dB, 26), and severe (MD
METHODS: In this cross-sectional study, 30 severe glaucoma patients, 30 mild glaucoma patients and 30 age-matched controls were recruited. All subjects underwent standard automated perimetry, RNFL analysis and 3 T MRI examinations. Glaucoma patients were classified according to the Hodapp-Anderson-Parish classification. Pearson's correlation coefficient was used to correlate ON volume with RNFL, and receiver operating curve (ROC) analysis was performed to determine the sensitivity and specificity of ON volume in detecting glaucoma severity.
RESULTS: Optic nerve volume was significantly lower in both the left and right eyes of the severe glaucoma group (168.70 ± 46.28 mm(3); 167.40 ± 45.36 mm(3)) than in the mild glaucoma group (264.03 ± 78.53 mm(3); 264.76 ± 78.88 mm(3)) and the control group (297.80 ± 71.45 mm(3); 296.56 ± 71.02 mm(3)). Moderate correlation was observed between: RNFL thickness and ON volume (r = 0.51, p <0.001), and in mean deviation of visual field and optic nerve volume (r = 0.60, p