Displaying publications 1 - 20 of 152 in total

Abstract:
Sort:
  1. Waris KH, Lee VS, Mohamad S
    Environ Sci Pollut Res Int, 2021 Sep;28(35):47785-47799.
    PMID: 34296410 DOI: 10.1007/s11356-021-15434-9
    The aim of this review is to highlight and provide an update on the current development of pesticide remediation methods, focusing on the utilization of different cyclodextrin (CD) molecules. Because of less environmental impact and non-toxic nature, CDs are beneficial for pesticide remediation, reducing environmental risk and health hazards. They are advantageous for the removal of pesticides from contaminated areas, as well as for better pesticide formulation and, posing significant effects on the hydrolysis or degradation of pesticides. The review focuses on the current trend and innovations regarding the methods and strategies employed for using CDs in designing pesticide remediation. Nowadays, in addition to the conventional experimental techniques, molecular simulation approaches are significantly contributing to the study of such phenomena and hence are recognized as a widely used tool.
    Matched MeSH terms: Pesticides*
  2. Ruman UE, Zubair M, Zeeshan MH
    Anal Biochem, 2023 Jun 01;670:115148.
    PMID: 37019252 DOI: 10.1016/j.ab.2023.115148
    The purpose of this study was to explore the new effective method and investigate the dissipation of chlorfenapyr and deltamethrin (DM) pesticides used in the treatment of guava fruit from tropical and sub-tropical areas of Pakistan. Five different solutions of varying concentrations of pesticides were prepared. This study involved the in-vitro and in-vivo analysis of modulated electric flux-triggered degradation as an efficient method for the safer degradation of selected pesticides. The Taser gun was used as a tool for providing different numbers of electrical shocks of million voltages to the pesticides present in guava fruit at different temperatures. The degraded pesticides were extracted and analyzed by High-performance liquid chromatography (HPLC). The HPLC chromatograms verified that significant dissipation of pesticides took place when these were exposed to 9 shocks at 37 °C, which proved the efficiency of this degradation method. More than 50% of the total spray of both pesticides was dissipated. Thus, modulated electrical flux-triggered degradation is one of the effective methods for pesticide degradation.
    Matched MeSH terms: Pesticides*
  3. Leong WH, Teh SY, Hossain MM, Nadarajaw T, Zabidi-Hussin Z, Chin SY, et al.
    J Environ Manage, 2020 Apr 15;260:109987.
    PMID: 32090796 DOI: 10.1016/j.jenvman.2019.109987
    This review intends to integrate the relevant information that is related to pesticide applications in food commodities and will cover three main sections. The first section encompasses some of the guidelines that have been implemented on management of pesticide application worldwide, such as the establishment of a value called Maximum Residue Level (MRL) through the application of Good Agricultural Practices (GAPs) into daily agricultural activities. A brief overview of the methods adopted in quantification of these trace residues in different food samples will also be covered. Briefly, pesticide analysis is usually performed in two stages: sample preparation and analytical instrumentation. Some of the preparation methods such as QuEChERs still remain as the technique of choice for most of the analytical scientists. In terms of the instrumentation such as the gas chromatography-mass spectrophotometry (GC-MS) and high performance-liquid chromatography (HPLC), these are still widely used, in spite of new inventions that are more sustainable and efficient such as the capillary electrophoresis (CE). Finally, the third section emphasizes on how pesticides can affect our health significantly whereby different types of pesticides result in different adverse health implications, despite its application benefits in agriculture in controlling pests. To date, there are limited reviews on pesticide usage in many agricultural-based nations; for the purpose of this review, Malaysia is selected to better illustrate pesticide regulations and implementation of policies. Finally, the review aims to provide an insight on how implementation of GAP and food safety assurance are inter-related and with this established correlation, to identify further measures for improvement to enable reinforcement of optimised agricultural practices specifically in these countries.
    Matched MeSH terms: Pesticide Residues*; Pesticides*
  4. Boedeker W, Watts M, Clausing P, Marquez E
    BMC Public Health, 2021 10 27;21(1):1943.
    PMID: 34702250 DOI: 10.1186/s12889-021-11941-z
    In a correspondence to BMC Public Health, Dunn et al. (Dunn SE, Reed J and Neumann C. BMC Public Health (n.d)) respond to our review on the occurrence of unintentional, acute pesticide poisoning (UAPP). Based on a systematic review and further data sources we estimated that about 385 million cases of UAPP occur annually world-wide including around 11,000 fatalities (Boedeker W. et al. BMC Public Health:1875, 2020).
    Matched MeSH terms: Pesticides*
  5. Mahar AM, Balouch A, Talpur FN, Abdullah, Panah P, Kumar R, et al.
    Environ Sci Pollut Res Int, 2020 Mar;27(9):9970-9978.
    PMID: 31933082 DOI: 10.1007/s11356-019-07548-y
    In this study, nano-sized ITO supported Pt-Pd bimetallic catalyst was synthesized for the degradation of methyl parathion pesticide, a common extremely toxic contaminant in aqueous solution. On the characterization with different techniques, a beautiful scenario of honeycomb architecture composed of ultra-small nanoneedles or fine hairs was found. Average size of nanocatalyst also confirmed which was in the range of 3-5 nm. High percent degradation (94%) was obtained in 30 s using 1.5 × 10- 1 mg of synthesized nanocatalyst, 0.5 mM NaBH4, and 110 W microwave radiations power. Recyclability of nanocatalyst was efficient till 4th cycle observed during study of reusability. The supported Pt-Pd bimetallic nanocatalyst on ITO displayed many advantages over conventional methods for degradation of methyl parathion pesticide, such as high percent degradation, short reaction time, small amount of nanocatalyst, and multitime reusability. Graphical abstract Schematic illustration of reaction for degradation of methyl parathion.
    Matched MeSH terms: Pesticides/analysis*
  6. Stuart AM, Merfield CN, Horgan FG, Willis S, Watts MA, Ramírez-Muñoz F, et al.
    Environ Sci Pollut Res Int, 2023 Feb;30(7):16984-17008.
    PMID: 36622585 DOI: 10.1007/s11356-022-24951-0
    A small proportion of the thousands of pesticides on the market today are associated with a disproportionately high incidence of severe acute pesticide poisoning and suicide. Paraquat stands out as one of the most lethal pesticides in common use, frequently involved in fatal incidents due to suicides or accidental exposure. Even though paraquat has been banned in over 67 countries, it is still widely used in many others, particularly in Asia and Latin America. Based on a literature review and consultations, this paper identifies options for replacing paraquat and distils practical lessons from numerous successes around the world. Our aim is to support regulators, policymakers, agronomists and the supply chain sector with practical information related to phasing out paraquat. Production data consistently failed to show any negative effects of banning paraquat on agricultural productivity. A wide range of alternative approaches to weed management and crop defoliation are available, many of which do not rely on herbicides. Over 1.25 million farmers in low- and middle-income countries (LMICs) successfully produce a range of crops for private voluntary standards (PVS) in food and fiber supply chains which prohibit paraquat use. We conclude from the findings of this study that eliminating paraquat will save lives without reducing agricultural productivity. Less hazardous and more sustainable alternatives exist. To enhance successful adoption and uptake of these methods on a wide scale, farmers require training and support within an enabling policy environment.
    Matched MeSH terms: Pesticides*
  7. Yavari S, Malakahmad A, Sapari NB
    Environ Sci Pollut Res Int, 2015 Sep;22(18):13824-41.
    PMID: 26250816 DOI: 10.1007/s11356-015-5114-2
    Biochar is a stabilized, carbon-rich by-product derived from pyrolysis of biomass. Recently, biochar has received extensive attentions because of its multi-functionality for agricultural and environmental applications. Biochar can contribute to sequestration of atmosphere carbon, improvement of soils quality, and mitigation of environmental contaminations. The capability of biochar for specific application is determined by its properties which are predominantly controlled by source material and pyrolysis route variables. The biochar sorption potential is a function of its surface area, pores volume, ash contents, and functional groups. The impacts of each production factors on these characteristics of biochar need to be well-understood to design efficient biochars for pesticides removal. The effects of biomass type on biochar sorptive properties are determined by relative amounts of its lingo-cellulosic compounds, minerals content, particles size, and structure. The highest treatment temperature is the most effective pyrolysis factor in the determination of biochar sorption behavior. The expansion of micro-porosity and surface area and also increase of biochar organic carbon content and hydrophobicity mostly happen by pyrolysis peak temperature rise. These changes make biochar suitable for immobilization of organic contaminants. Heating rate, gas pressure, and reaction retention time after the pyrolysis temperatures are sequentially important pyrolysis variables effective on biochar sorptive properties. This review compiles the available knowledge about the impacts of production variables on biochars sorptive properties and discusses the aging process as the main factor in post-pyrolysis alterations of biochars sorption capacity. The drawbacks of biochar application in the environment are summarized as well in the last section.
    Matched MeSH terms: Pesticides/isolation & purification; Pesticides/chemistry*
  8. Jeyaseelan A, Murugesan K, Thayanithi S, Palanisamy SB
    Environ Res, 2024 Mar 15;245:118020.
    PMID: 38151149 DOI: 10.1016/j.envres.2023.118020
    Enhancing crop yield to accommodate the ever-increasing world population has become critical, and diminishing arable land has pressured current agricultural practices. Intensive farming methods have been using more pesticides and insecticides (biocides), culminating in soil deposition, negatively impacting the microbiome. Hence, a deeper understanding of the interaction and impact of pesticides and insecticides on microbial communities is required for the scientific community. This review highlights the recent findings concerning the possible impacts of biocides on various soil microorganisms and their diversity. This review's bibliometric analysis emphasised the recent developments' statistics based on the Scopus document search. Pesticides and insecticides are reported to degrade microbes' structure, cellular processes, and distinct biochemical reactions at cellular and biochemical levels. Several biocides disrupt the relationship between plants and their microbial symbionts, hindering beneficial biological activities that are widely discussed. Most microbial target sites of or receptors are biomolecules, and biocides bind with the receptor through a ligand-based mechanism. The biomarker action mechanism in response to biocides relies on activating the receptor site by specific biochemical interactions. The production of electrophilic or nucleophilic species, free radicals, and redox-reactive agents are the significant factors of biocide's metabolic reaction. Most studies considered for the review reported the negative impact of biocides on the soil microbial community; hence, technological development is required regarding eco-friendly pesticide and insecticide, which has less or no impact on the soil microbial community.
    Matched MeSH terms: Pesticides*
  9. Chan LF, Chin SJ, Loo TH, Panirselvam RR, Chang SS, Chang HY, et al.
    BMC Psychiatry, 2023 Jun 28;23(1):472.
    PMID: 37380953 DOI: 10.1186/s12888-023-04974-8
    BACKGROUND: Previous studies have shown that pesticide bans were associated with reduced fatal pesticide self-poisoning cases in high, and low-and-middle-income countries. We aimed to investigate the characteristics of pesticide poisoning patients admitted to two Malaysian hospitals and the early impact of the national paraquat ban implemented on 1st January 2020 in a culturally heterogenous South-East-Asian upper-middle-income setting.

    METHODS: Data were collected from an East (Bintulu) and a West (Ipoh) Malaysian hospital medical records in 2015-2021 and 2018-2021, respectively. Logistic regression analyses were conducted to investigate the association of aspects such as socio-demographic and clinical characteristics, paraquat ban with the types of pesticides involved (paraquat versus non-paraquat versus unknown) ,and the outcomes (fatal versus non-fatal).

    RESULTS: From the study sample of 212 pesticide poisoning patients aged 15 years or above, the majority were self-poisoning cases (75.5%) with a disproportionate over-representation of Indian ethnic minority (44.8%). Most pesticide poisoning cases had socio-environmental stressors (62.30%). The commonest stressors were domestic interpersonal conflicts (61.36%). 42.15% of pesticide poisoning survivors had a psychiatric diagnosis. Paraquat poisoning accounted for 31.6% of all patients and 66.7% of fatalities. Case fatality was positively associated with male gender, current suicidal intent, and paraquat poisoning. After the paraquat ban, the proportion of pesticide poisoning cases using paraquat decreased from 35.8 to 24.0%, and the overall case-fatality dropped slightly from 21.2 to 17.3%.

    CONCLUSIONS: Socio-environmental stressors in specific domestic interpersonal conflicts, seemed more prominent in pesticide poisoning compared to psychiatric diagnosis. Paraquat accounted for the majority of pesticide-associated deaths occurring in hospitals in the study areas. There was preliminary evidence that the 2020 paraquat ban led to a fall in case fatality from pesticide poisoning.

    Matched MeSH terms: Pesticides*
  10. Kamaruzaman NA, Leong YH, Jaafar MH, Mohamed Khan HR, Abdul Rani NA, Razali MF, et al.
    BMJ Open, 2020 06 01;10(6):e036048.
    PMID: 32487578 DOI: 10.1136/bmjopen-2019-036048
    OBJECTIVE: Pesticide poisoning is a global health problem, and its progressive deterioration is a major cause of concern. The objective of this study is to assess epidemiological characteristics and identify risk factors of pesticide poisoning in Malaysia.

    SETTING: Pesticide poisoning database of Malaysia National Poison Centre (NPC) from 2006 to 2015.

    PARTICIPANTS: Telephone enquiries regarding pesticide poisoning were made by healthcare professionals. Information received by the NPC was entered into a retrievable database of standardised Poison Case Report Form, as adapted from the World Health Organization (WHO).

    OUTCOMES: The outcome of the study is to provide an overview of national epidemiological profile of pesticide poisoning. High-risk groups of people and their circumstances were also identified to ensure that appropriate measures are strategised.

    RESULTS: Within the study period, a total of 11 087 pesticide poisoning cases were recorded. Sixty per cent of these cases were intentional in nature and most were found among male individuals (57%) of the Indian race (36.4%) aged between 20 and 29 years (25.5%), which occurred at home (90%) through the route of ingestion (94%). The highest number of poisoning was due to herbicides (44%) followed by agricultural insecticides (34%), rodenticides (9.9%), household insecticides (9.5%) and fungicides (0.5%). In addition, 93.6% of intentional pesticide poisoning cases were caused by suicide attempts. The results of this study show that there was an increasing trend in pesticide poisoning incidents over the 10-year duration. This indicates that pesticide poisoning is a prevalent public health problem in Malaysia, resulting in an average incidence rate of 3.8 per 100 000 population.

    CONCLUSIONS: Deliberate pesticide ingestion as a method of suicide has become a disturbing trend among Malaysians. Therefore, regulation of highly hazardous pesticides must be enforced to ensure controlled and limited access to these chemicals by the public.

    Matched MeSH terms: Pesticides*
  11. Ahmed SF, Mofijur M, Nuzhat S, Chowdhury AT, Rafa N, Uddin MA, et al.
    J Hazard Mater, 2021 08 15;416:125912.
    PMID: 34492846 DOI: 10.1016/j.jhazmat.2021.125912
    Emerging contaminants (ECs) in wastewater have recently attracted the attention of researchers as they pose significant risks to human health and wildlife. This paper presents the state-of-art technologies used to remove ECs from wastewater through a comprehensive review. It also highlights the challenges faced by existing EC removal technologies in wastewater treatment plants and provides future research directions. Many treatment technologies like biological, chemical, and physical approaches have been advanced for removing various ECs. However, currently, no individual technology can effectively remove ECs, whereas hybrid systems have often been found to be more efficient. A hybrid technique of ozonation accompanied by activated carbon was found significantly effective in removing some ECs, particularly pharmaceuticals and pesticides. Despite the lack of extensive research, nanotechnology may be a promising approach as nanomaterial incorporated technologies have shown potential in removing different contaminants from wastewater. Nevertheless, most existing technologies are highly energy and resource-intensive as well as costly to maintain and operate. Besides, most proposed advanced treatment technologies are yet to be evaluated for large-scale practicality. Complemented with techno-economic feasibility studies of the treatment techniques, comprehensive research and development are therefore necessary to achieve a full and effective removal of ECs by wastewater treatment plants.
    Matched MeSH terms: Pesticides*
  12. Yusof MZ, Cherrie JW, Samsuddin N, Semple S
    Ann Work Expo Health, 2022 10 11;66(8):1044-1055.
    PMID: 35661855 DOI: 10.1093/annweh/wxac038
    BACKGROUND: Use of pesticides has been linked to neurobehavioral deficits among exposed workers. In Malaysia, organophosphate and pyrethroid pesticides are commonly used to control mosquito-borne diseases.

    OBJECTIVES: This study aims to assess workers' lifetime occupational pesticide exposure and examine the relationship with neurobehavioral health.

    METHODS: A cross-sectional study was conducted on 158 pesticide-exposed and 176 non-exposed workers. To collect historical exposure and job tasks, a questionnaire and an occupational history interview were used. Pesticide exposure was measured in a subgroup of workers via inhalation and skin contact. The total pesticide intake of each worker was assessed using inhalation and dermal exposure models. CANTAB® computerised neurobehavioral performance assessments were used.

    RESULTS: The participants' mean age was 31 (8) years. Pirimiphos-methyl (median = 0.569 mg/m3, Interquartile range [IQR] = 0.151, 0.574) and permethrin (median = 0.136 mg/m3, IQR = 0.116, 0.157) had the highest measured personal inhalation concentrations during thermal spraying. The estimated total lifetime pesticide intake for exposed workers ranged from 0.006 g to 12800 g (median = 379 g and IQR = 131, 794 g). Dermal exposure was the predominant route of pesticide intake for all workers. Compared to controls, workers with high lifetime pesticide intake had lower Match to Sample Visual (adjusted B = -1.4, 95% Confidence Interval (CI) = -2.6, 0.1), Spatial Recognition Memory (adjusted B = -3.3, 95% CI = -5.8, 0.8), Spatial Span (SSP) (adjusted B = -0.6, 95% CI = -0.9, 0.3) scores. Workers with low pesticide intake performed worse than controls (adjusted B = -0.5, 95% CI = -0.8, -0.2) in the SSP test, but scored higher in the Motor Screening test (adjusted B = 0.9, 95% CI = 0.1, 1.6). Higher Paired Associates Learning test scores were observed among higher (adjusted B = 7.4, 95% CI = 2.3, 12.4) and lower (adjusted B = 8.1, 95% CI = 3, 13.2) pesticide intake groups. There was no significant difference between the Reaction Time and Pattern Recognition Memory tests with lifetime pesticide intake after adjusting for confounders.

    CONCLUSION: Pesticide exposure has been linked to poorer neurobehavioral performance. As dermal exposure accounts for a major fraction of total intake, pesticide prevention should focus on limiting dermal exposure.

    Matched MeSH terms: Pesticides*
  13. Batool S, Shah AA, Abu Bakar AF, Maah MJ, Abu Bakar NK
    Chemosphere, 2022 Feb;289:133011.
    PMID: 34863732 DOI: 10.1016/j.chemosphere.2021.133011
    Unique zerovalent iron (Fe0) supported on biochar nanocomposite (Fe0-BRtP) was synthesized from Nephelium lappaceum (Rambutan) fruit peel waste and were applied for the simultaneous removal of 6 selected organochlorine pesticides (OCPs) from aqueous medium. During facile synthesis of Fe0-BRtP, Rambutan peel extract was used as the green reducing mediator to reduce Fe2+ to zerovalent iron (Fe0), instead of toxic sodium borohydride which were used for chemical synthesis. For comparison, chemically synthesized Fe0-BChe nanocomposite was also prepared in this work. Characterization study confirmed the successful synthesis and dispersion of Fe0 nanoparticles on biochar surface. Batch experiments revealed that Fe0-BRtP and Fe0-BChe nanocomposites combine the advantage of adsorption and dechlorination of OCPs in aqueous medium and up to 96-99% and 83-91% removal was obtained within 120 and 150 min, respectively at initial pH 4. Nevertheless, the reactivity of Fe0-BChe nanocomposite decreased 2 folds after being aged in air for one month, whilst Fe0-BRtP almost remained the same. Adsorption isotherm of OCPs were fitted well to Langmuir isotherm and then to Freundlich isotherm. The experimental kinetic data were fitted first to pseudo-second-order adsorption kinetic model and then to pseudo-first-order reduction kinetic model. The adsorption mechanism involves π-π electron-donor-acceptor interaction and adsorption is facilitated by the hydrophobic sorption and pore filling. After being reused five times, the removal efficiency of regenerated Fe0-BChe and Fe0-BRtP was 5-13% and 89-92%, respectively. The application of this Fe0-BRtP nanocomposite could represent a green and low-cost potential material for adsorption and subsequent reduction of OCPs in aquatic system.
    Matched MeSH terms: Pesticides*
  14. Dhanarisi J, Perera S, Wijerathna T, Gawarammana I, Shihana F, Pathiraja V, et al.
    Alcohol Alcohol, 2023 Jan 09;58(1):4-12.
    PMID: 36172715 DOI: 10.1093/alcalc/agac045
    AIM: Alcohol is a commonly co-ingested compound during self-poisoning with pesticides. Clinical experiences suggest alcohol co-ingestion (or withdrawal) makes patient management more difficult after self-poisoning and may contribute to poor clinical outcomes. We aimed to systematically review the world literature to explore the relationship between alcohol co-ingestion and outcome in pesticide self-poisoning.

    METHODS: We searched 13 electronic databases and Google scholar, conducted citation searching and a review of reference lists to find studies which investigated the relationship of alcohol with clinical outcome of pesticide self-poisoning in different countries. Thirteen studies, including 11 case series/reports and two cohort studies were considered for inclusion.

    RESULTS: Meta-analysis showed that alcohol co-ingestion in pesticide self-poisoning was associated with increased risk of death [odds ratio (OR) 4.9, 95% confidence interval (CI) 2.9-8.2 P<0.0001] and that alcohol co-ingested group required intubation eight times more often than non-co-ingested group in organophosphorus insecticide self-poisoning (OR 8.0, 95% CI 4.9-13.0 P<0.0001). Cases who co-ingested alcohol were older than non-alcohol group in two studies. One cohort study demonstrated that alcohol co-ingestion was associated with larger pesticide ingestions but did not itself affect the outcome.

    CONCLUSIONS: This systematic review indicates that alcohol co-ingestion may worsen clinical outcome in pesticide self-poisoning.

    Matched MeSH terms: Pesticides*
  15. Shazmin, Ahmad SA, Naqvi TA, Munis MFH, Javed MT, Chaudhary HJ
    World J Microbiol Biotechnol, 2023 Mar 31;39(6):141.
    PMID: 37000294 DOI: 10.1007/s11274-023-03575-7
    Widespread and inadequate use of Monocrotophos has led to several environmental issues. Biodegradation is an ecofriendly method used for detoxification of toxic monocrotophos. In the present study, Msd2 bacterial strain was isolated from the cotton plant growing in contaminated sites of Sahiwal, Pakistan. Msd2 is capable of utilizing the monocrotophos (MCP) organophosphate pesticide as its sole carbon source for growth. Msd2 was identified as Brucella intermedia on the basis of morphology, biochemical characterization and 16S rRNA sequencing. B. intermedia showed tolerance of MCP up to 100 ppm. The presence of opd candidate gene for pesticide degradation, gives credence to B. intermedia as an effective bacterium to degrade MCP. Screening of the B. intermedia strain Msd2 for plant growth promoting activities revealed its ability to produce ammonia, exopolysaccharides, catalase, amylase and ACC-deaminase, and phosphorus, zinc and potassium solubilization. The optimization of the growth parameters (temperatures, shaking rpm, and pH level) of the MCP-degrading isolate was carried out in minimal salt broth supplemented with MCP. The optimal pH, temperature, and rpm for Msd2 growth were observed as pH 6, 35 °C, and 120 rpm, respectively. Based on optimization results, batch degradation experiment was performed. Biodegradation of MCP by B. intermedia was monitored using HPLC and recorded 78% degradation of MCP at 100 ppm concentration within 7 days of incubation. Degradation of MCP by Msd2 followed the first order reaction kinetics. Plant growth promoting and multi-stress tolerance ability of Msd2 was confirmed by molecular analysis. It is concluded that Brucella intermedia strain Msd2 could be beneficial as potential biological agent for an effective bioremediation for polluted environments.
    Matched MeSH terms: Pesticides*
  16. Tan BL, Mustafa AM
    Asia Pac J Public Health, 2004;16(1):54-63.
    PMID: 18839869
    Alkylphenols and most pesticides, especially organochlorine pesticides are endocrine-disrupting chemicals and they usually mimic the female hormone, estrogen. Using these chemicals in our environment would eventually lead us to consume them somehow in the food web. Several rivers in the State of Selangor, Malaysia were selected to monitor the level of alkylphenols and pesticides contamination for several months. The compounds were extracted from the water samples using liquid-liquid extraction method with dichloromethane and ethyl acetate as the extracting solvents. The alkylphenols and pesticides were analyzed by selected ion monitoring (SIM) mode using the quadrapole detector in Shimadzu QP-5000 gas chromatograph-mass spectrometer (GCMS). Recovery of most alkylphenols and pesticides were in the range of 50% to 120%. Trace amounts of the compounds were detected in the river water samples, mainly in the range of parts per trillion. This technique of monitoring the levels of endocrine-disruptors in river water is consistent and cost effective.
    Matched MeSH terms: Pesticides/analysis*
  17. Samsuddin N, Rampal KG, Ismail NH, Abdullah NZ, Nasreen HE
    Am J Hypertens, 2016 Feb;29(2):226-33.
    PMID: 26112865 DOI: 10.1093/ajh/hpv093
    Research findings have linked exposure to pesticides to an increased risk of cardiovascular (CVS) diseases. Therefore, this study aimed to assess the impact of chronic mix-pesticides exposure on CVS hemodynamic parameters.
    Matched MeSH terms: Pesticides
  18. Nashriyah Mat, Mazleha Maskin, Kubiak, Roland
    MyJurnal
    The soil plant transfer coefficient or f factor of 14 C-carbofuran pesticide was studied in outdoor lysimeter experiment consisting of Brassica sp. vegetable crop, riverine alluvial clayey soil and Bungor series sandy loam soil. Soil transfer coefficients at 0-10 cm soil depth were 4.38 + 0.30, 5.76 + 1.04, 0.99 + 0.25 and 2.66 + 0.71; from 1X recommended application rate in alluvial soil, 2X recommended application rate in alluvial soil, 1X recommended application rate in Bungor soil and 2X recommended application rate in Bungor soil, respectively. At 0-25 cm soil depth, soil plant transfer coefficients were 8.96 + 0.91, 10.40 + 2.63, 2.34 + 0.68 and 6.19 + 1.40; from 1X recommended application rate in alluvial soil, 2X recommended application rate in alluvial soil, 1X recommended application rate in Bungor soil and 2X recommended application rate in Bungor soil, respectively. At 77 days after treatment (DAT), the soil plant transfer coefficient was significantly higher in riverine alluvial soil than Bungor soil whereas shoot and root growth was significantly higher in Bungor soil than in riverine alluvial soil. At both 0-10 cm Brassica sp. rooting depth and 0-25 cm soil depth, the soil plant transfer coefficient was significantly higher in 2X recommended application rate of 14 C-carbofuran as compared to 1X recommended application rate, in both Bungor and riverine alluvial soils.
    Matched MeSH terms: Pesticides
  19. Moniruzzaman M, Chowdhury MA, Rahman MA, Sulaiman SA, Gan SH
    Biomed Res Int, 2014;2014:359890.
    PMID: 24982869 DOI: 10.1155/2014/359890
    The present study was undertaken to determine the content of six minerals, five trace elements, and ten pesticide residues in honeys originating from different regions of Malaysia. Calcium (Ca), magnesium (Mg), iron (Fe), and zinc (Zn) were analyzed by flame atomic absorption spectrometry (FAAS), while sodium (Na) and potassium (K) were analyzed by flame emission spectrometry (FAES). Trace elements such as arsenic (As), lead (Pb), cadmium (Cd), copper (Cu), and cobalt (Co) were analyzed by graphite furnace atomic absorption spectrometry (GFAAS) following the microwave digestion of honey. High mineral contents were observed in the investigated honeys with K, Na, Ca, and Fe being the most abundant elements (mean concentrations of 1349.34, 236.80, 183.67, and 162.31 mg/kg, resp.). The concentrations of the trace elements were within the recommended limits, indicating that the honeys were of good quality. Principal component analysis reveals good discrimination between the different honey samples. The pesticide analysis for the presence of organophosphorus and carbamates was performed by high performance liquid chromatography (HPLC). No pesticide residues were detected in any of the investigated honey samples, indicating that the honeys were pure. Our study reveals that Malaysian honeys are rich sources of minerals with trace elements present within permissible limits and that they are free from pesticide contamination.
    Matched MeSH terms: Pesticides/analysis*
  20. Wan Ibrahim WA, Farhani H, Sanagi MM, Aboul-Enein HY
    J Chromatogr A, 2010 Jul 23;1217(30):4890-7.
    PMID: 20561627 DOI: 10.1016/j.chroma.2010.05.050
    A new sol-gel hybrid coating, polydimethylsiloxane-2-hydroxymethyl-18-crown-6 (PDMS-2OHMe18C6) was prepared in-house for use in solid phase microextraction (SPME). The three compositions produced were assessed for its extraction efficiency towards three selected organophosphorus pesticides (OPPs) based on peak area extracted obtained from gas chromatography with electron capture detection. All three compositions showed superior extraction efficiencies compared to commercial 100 microm PDMS fiber. The composition showing best extraction performance was used to obtain optimized SPME conditions: 75 degrees C extraction temperature, 10 min extraction time, 120 rpm stirring rate, desorption time 5 min, desorption temperature 250 degrees C and 1.5% (w/v) of NaCl salt addition. The method detection limits (S/N=3) of the OPPs with the new sol-gel hybrid material ranged from 4.5 to 4.8 ng g(-1), which is well below the maximum residue limit set by Codex Alimentarius Commission and European Commission. Percentage recovery of OPPs from strawberry, green apple and grape samples with the new hybrid sol-gel SPME material ranged from 65 to 125% with good precision of the method (%RSD) ranging from 0.3 to 7.4%.
    Matched MeSH terms: Pesticides/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links