Displaying publications 1 - 20 of 119 in total

  1. Ciniciato GP, Ng FL, Phang SM, Jaafar MM, Fisher AC, Yunus K, et al.
    Sci Rep, 2016 08 09;6:31193.
    PMID: 27502051 DOI: 10.1038/srep31193
    Microbial fuel cells operating with autotrophic microorganisms are known as biophotovoltaic devices. It represents a great opportunity for environmentally-friendly power generation using the energy of the sunlight. The efficiency of electricity generation in this novel system is however low. This is partially reflected by the poor understanding of the bioelectrochemical mechanisms behind the electron transfer from these microorganisms to the electrode surface. In this work, we propose a combination of electrochemical and fluorescence techniques, giving emphasis to the pulse amplitude modulation fluorescence. The combination of these two techniques allow us to obtain information that can assist in understanding the electrical response obtained from the generation of electricity through the intrinsic properties related to the photosynthetic efficiency that can be obtained from the fluorescence emitted. These were achieved quantitatively by means of observed changes in four photosynthetic parameters with the bioanode generating electricity. These are the maximum quantum yield (Fv/Fm), alpha (α), light saturation coefficient (Ek) and maximum rate of electron transfer (rETRm). The relationship between the increases in the current density collected by the bioanode to the decrease of the rETRm values in the photosynthetic pathway for the two microorganisms was also discussed.
    Matched MeSH terms: Photosynthesis*
  2. Wang CT, Huang YS, Sangeetha T, Chen YM, Chong WT, Ong HC, et al.
    Bioresour Technol, 2018 May;255:83-87.
    PMID: 29414177 DOI: 10.1016/j.biortech.2018.01.086
    Photosynthetic microbial fuel cells (PMFCs) are novel bioelectrochemical transducers that employ microalgae to generate oxygen, organic metabolites and electrons. Conventional PMFCs employ non-eco-friendly membranes, catalysts and phosphate buffer solution. Eliminating the membrane, buffer and catalyst can make the MFC a practical possibility. Therefore, single chambered (SPMFC) were constructed and operated at different recirculation flow rates (0, 40 and 240 ml/min) under bufferless conditions. Furthermore, maximum power density of 4.06 mW/m2, current density of 46.34 mA/m2 and open circuit potential of 0.43 V and low internal resistance of 611.8 Ω were obtained at 40 ml/min. Based on the results it was decided that SPMFC was better for operation at 40 ml/min. Therefore, these findings provided progressive insights for future pilot and industrial scale studies of PMFCs.
    Matched MeSH terms: Photosynthesis*
  3. Ghasemzadeh A, Jaafar HZ, Rahmat A
    Int J Mol Sci, 2010;11(11):4539-55.
    PMID: 21151455 DOI: 10.3390/ijms11114539
    The relationship between phenolics and flavonoids synthesis/accumulation and photosynthesis rate was investigated for two Malaysian ginger (Zingiber officinale) varieties grown under four levels of glasshouse light intensity, namely 310, 460, 630 and 790 μmol m(-2)s(-1). High performance liquid chromatography (HPLC) was employed to identify and quantify the polyphenolic components. The results of HPLC analysis indicated that synthesis and partitioning of quercetin, rutin, catechin, epicatechin and naringenin were high in plants grown under 310 μmol m(-2)s(-1). The average value of flavonoids synthesis in leaves for both varieties increased (Halia Bentong 26.1%; Halia Bara 19.5%) when light intensity decreased. Photosynthetic rate and plant biomass increased in both varieties with increasing light intensity. More specifically, a high photosynthesis rate (12.25 μmol CO(2) m(-2)s(-1) in Halia Bara) and plant biomass (79.47 g in Halia Bentong) were observed at 790 μmol m(-2)s(-1). Furthermore, plants with the lowest rate of photosynthesis had highest flavonoids content. Previous studies have shown that quercetin inhibits and salicylic acid induces the electron transport rate in photosynthesis photosystems. In the current study, quercetin was an abundant flavonoid in both ginger varieties. Moreover, higher concentration of quercetin (1.12 mg/g dry weight) was found in Halia Bara leaves grown under 310 μmol m(-2)s(-1) with a low photosynthesis rate. Furthermore, a high content of salicylic acid (0.673 mg/g dry weight) was detected in Halia Bara leaves exposed under 790 μmol m(-2)s(-1) with a high photosynthesis rate. No salicylic acid was detected in gingers grown under 310 μmol m(-2)s(-1). Ginger is a semi-shade loving plant that does not require high light intensity for photosynthesis. Different photosynthesis rates at different light intensities may be related to the absence or presence of some flavonoid and phenolic compounds.
    Matched MeSH terms: Photosynthesis*
  4. Bhagooli R, Mattan-Moorgawa S, Kaullysing D, Louis YD, Gopeechund A, Ramah S, et al.
    Mar Pollut Bull, 2021 Apr;165:112059.
    PMID: 33677415 DOI: 10.1016/j.marpolbul.2021.112059
    Chlorophyll a fluorescence is increasingly being used as a rapid, non-invasive, sensitive and convenient indicator of photosynthetic performance in marine autotrophs. This review presents the methodology, applications and limitations of chlorophyll fluorescence in marine studies. The various chlorophyll fluorescence tools such as Pulse-Amplitude-Modulated (PAM) and Fast Repetition Rate (FRR) fluorometry used in marine scientific studies are discussed. Various commonly employed chlorophyll fluorescence parameters are elaborated. The application of chlorophyll fluorescence in measuring natural variations, stress, stress tolerance and acclimation/adaptation to changing environment in primary producers such as microalgae, macroalgae, seagrasses and mangroves, and marine symbiotic invertebrates, namely symbiotic sponges, hard corals and sea anemones, kleptoplastic sea slugs and giant clams is critically assessed. Stressors include environmental, biological, physical and chemical ones. The strengths, limitations and future perspectives of the use of chlorophyll fluorescence technique as an assessment tool in symbiotic marine organisms and seaplants are discussed.
    Matched MeSH terms: Photosynthesis
  5. Tay BA
    Phys Rev E, 2021 Apr;103(4-1):042124.
    PMID: 34005972 DOI: 10.1103/PhysRevE.103.042124
    We consider the reduced dynamics of a molecular chain weakly coupled to a phonon bath. With a small and constant inhomogeneity in the coupling, the excitation relaxation rates are obtained in closed form. They are dominated by transitions between exciton modes lying next to each other in the energy spectrum. The rates are quadratic in the number of sites in a long chain. Consequently, the evolution of site occupation numbers exhibits longer coherence lifetime for short chains only. When external source and sink are added, the rate equations of exciton occupation numbers are similar to those obtained earlier by Fröhlich to explain energy storage and energy transfer in biological systems. There is a clear separation of timescale into a faster one pertaining to internal influence of the chain and phonon bath, and a slower one determined by external influence, such as the pumping rate of the source, the absorption rate of the sink, and the rate of radiation loss. The energy transfer efficiency at steady state depends strongly on these external parameters and is robust against a change in the internal parameters, such as temperature and inhomogeneity. Excitations are predicted to concentrate to the lowest energy mode when the source power is sufficiently high. In the site basis, this implies that when sustained by a high power source, a sink positioned at the center of the chain is more efficient in trapping energy than a sink placed at its end. Analytic expressions of energy transfer efficiency are obtained in the high power and low-power source limit. Parameters of a photosynthetic system are used as examples to illustrate the results.
    Matched MeSH terms: Photosynthesis
  6. Tomimatsu H, Iio A, Adachi M, Saw LG, Fletcher C, Tang Y
    Tree Physiol., 2014 Sep;34(9):944-54.
    PMID: 25187569 DOI: 10.1093/treephys/tpu066
    Understory plants in tropical forests often experience a low-light environment combined with high CO2 concentration. We hypothesized that the high CO2 concentration may compensate for leaf carbon loss caused by the low light, through increasing light-use efficiency of both steady-state and dynamic photosynthetic properties. To test the hypothesis, we examined CO2 gas exchange in response to an artificial lightfleck in Dipterocarpus sublamellatus Foxw. seedlings under contrasting CO2 conditions: 350 and 700 μmol CO2 mol(-1) air in a tropical rain forest, Pasoh, Malaysia. Total photosynthetic carbon gain from the lightfleck was about double when subjected to the high CO2 when compared with the low CO2 concentration. The increase of light-use efficiency in dynamic photosynthesis contributed 7% of the increased carbon gain, most of which was due to reduction of photosynthetic induction to light increase under the high CO2. The light compensation point of photosynthesis decreased by 58% and the apparent quantum yield increased by 26% at the high CO2 compared with those at the low CO2. The study suggests that high CO2 increases photosynthetic light-use efficiency under both steady-state and fluctuating light conditions, which should be considered in assessing the leaf carbon gain of understory plants in low-light environments.
    Matched MeSH terms: Photosynthesis*
  7. Ng FL, Phang SM, Periasamy V, Yunus K, Fisher AC
    PLoS One, 2014;9(5):e97643.
    PMID: 24874081 DOI: 10.1371/journal.pone.0097643
    In photosynthesis, a very small amount of the solar energy absorbed is transformed into chemical energy, while the rest is wasted as heat and fluorescence. This excess energy can be harvested through biophotovoltaic platforms to generate electrical energy. In this study, algal biofilms formed on ITO anodes were investigated for use in the algal biophotovoltaic platforms. Sixteen algal strains, comprising local isolates and two diatoms obtained from the Culture Collection of Marine Phytoplankton (CCMP), USA, were screened and eight were selected based on the growth rate, biochemical composition and photosynthesis performance using suspension cultures. Differences in biofilm formation between the eight algal strains as well as their rapid light curve (RLC) generated using a pulse amplitude modulation (PAM) fluorometer, were examined. The RLC provides detailed information on the saturation characteristics of electron transport and overall photosynthetic performance of the algae. Four algal strains, belonging to the Cyanophyta (Cyanobacteria) Synechococcus elongatus (UMACC 105), Spirulina platensis. (UMACC 159) and the Chlorophyta Chlorella vulgaris (UMACC 051), and Chlorella sp. (UMACC 313) were finally selected for investigation using biophotovoltaic platforms. Based on power output per Chl-a content, the algae can be ranked as follows: Synechococcus elongatus (UMACC 105) (6.38×10(-5) Wm(-2)/µgChl-a)>Chlorella vulgaris UMACC 051 (2.24×10(-5) Wm(-2)/µgChl-a)>Chlorella sp.(UMACC 313) (1.43×10(-5) Wm(-2)/µgChl-a)>Spirulina platensis (UMACC 159) (4.90×10(-6) Wm(-2)/µgChl-a). Our study showed that local algal strains have potential for use in biophotovoltaic platforms due to their high photosynthetic performance, ability to produce biofilm and generation of electrical power.
    Matched MeSH terms: Photosynthesis*
  8. Lau NS, Foong CP, Kurihara Y, Sudesh K, Matsui M
    PLoS One, 2014;9(1):e86368.
    PMID: 24466058 DOI: 10.1371/journal.pone.0086368
    The photosynthetic cyanobacterium, Synechocystis sp. strain 6803, is a potential platform for the production of various chemicals and biofuels. In this study, direct photosynthetic production of a biopolymer, polyhydroxyalkanoate (PHA), in genetically engineered Synechocystis sp. achieved as high as 14 wt%. This is the highest production reported in Synechocystis sp. under photoautotrophic cultivation conditions without the addition of a carbon source. The addition of acetate increased PHA accumulation to 41 wt%, and this value is comparable to the highest production obtained with cyanobacteria. Transcriptome analysis by RNA-seq coupled with real-time PCR was performed to understand the global changes in transcript levels of cells subjected to conditions suitable for photoautotrophic PHA biosynthesis. There was lower expression of most PHA synthesis-related genes in recombinant Synechocystis sp. with higher PHA accumulation suggesting that the concentration of these enzymes is not the limiting factor to achieving high PHA accumulation. In order to cope with the higher PHA production, cells may utilize enhanced photosynthesis to drive the product formation. Results from this study suggest that the total flux of carbon is the possible driving force for the biosynthesis of PHA and the polymerizing enzyme, PHA synthase, is not the only critical factor affecting PHA-synthesis. Knowledge of the regulation or control points of the biopolymer production pathways will facilitate the further use of cyanobacteria for biotechnological applications.
    Matched MeSH terms: Photosynthesis*
  9. Ibrahim MH, Jaafar HZ
    Molecules, 2012 Jan 27;17(2):1159-76.
    PMID: 22286668 DOI: 10.3390/molecules17021159
    The resource availability hypothesis predicts an increase in the allocation to secondary metabolites when carbon gain is improved relative to nutrient availability, which normally occurs during periods of low irradiance. The present work was carried out to confirm this hypothesis by investigating the effects of decreasing irradiance on the production of plant secondary metabolites (flavonoids and phenolics) in the herbal plant Orthosiphon stamineus, and to characterize this production by carbohydrate, H(2)O(2), and malondialdehyde (MDA) levels, net photosynthesis, leaf chlorophyll content and carbon to nitrogen ratio (C/N). Four levels of irradiance (225, 500, 625 and 900 µmol/m(2)/s) were imposed onto two-week old seedlings for 12 weeks in a randomized complete block design experiment. Peak production of total flavonoids, phenolics, soluble sugar, starch and total non-structural carbohydrate ocurred under low irradiance of 225 µmol/m(2)/s, and decreased with increasing irradiance. The up-regulation of secondary metabolites could be explained by the concomitant increases in H(2)O(2) and MDA activities under low irradiance. This condition also resulted in enhanced C/N ratio signifying a reduction in nitrogen levels, which had established significant negative correlations with net photosynthesis, total biomass and total chlorophyll content, indicating the possible existence of a trade-off between growth and secondary metabolism under low irradiance with reduced nitrogen content. The competition between total chlorophyll and secondary metabolites production, as exhibited by the negative correlation coefficient under low irradiance, also suggests a sign of gradual switch of investment from chlorophyll to polyphenols production.
    Matched MeSH terms: Photosynthesis*
  10. Ibrahim MH, Jaafar HZ
    Molecules, 2011 May 04;16(5):3761-77.
    PMID: 21544039 DOI: 10.3390/molecules16053761
    A split plot 3 by 3 experiment was designed to investigate and distinguish the relationships among production of primary metabolites (soluble sugar and starch), secondary metabolites (total phenolics, TP; total flavonoids, TF) and leaf gas exchange of three varieties of the Malaysian medicinal herb Labisia pumila Blume, namely the varieties alata, pumila and lanceolata, under three levels of CO₂ enrichment (400, 800 and 1,200 µmol mol⁻¹) for 15 weeks. The treatment effects were solely contributed by CO₂ enrichment levels; no varietal differences were observed. As CO₂ levels increased from 400 to 1,200 µmol mol⁻¹, the production of carbohydrates also increased steadily, especially for starch more than soluble sugar (sucrose). TF and TP content, simultaneously, reached their peaks under 1,200 µmol exposure, followed by 800 and 400 µmol mol⁻¹. Net photosynthesis (A) and quantum efficiency of photosystem II (f(v)/f(m)) were also enhanced as CO₂ increased from 400 to 1,200 µmol mol⁻¹. Leaf gas exchange characteristics displayed a significant positive relationship with the production of secondary metabolites and carbohydrate contents. The increase in production of TP and TFs were manifested by high C/N ratio and low protein content in L. pumila seedlings, and accompanied by reduction in cholorophyll content that exhibited very significant negative relationships with total soluble sugar, starch and total non structural carbohydrate.
    Matched MeSH terms: Photosynthesis/physiology
  11. Ibrahim MH, Jaafar HZ, Rahmat A, Rahman ZA
    Molecules, 2010 Dec 29;16(1):162-74.
    PMID: 21191319 DOI: 10.3390/molecules16010162
    A factorial split plot 4 × 3 experiment was designed to examine and characterize the relationship among production of secondary metabolites (total phenolics, TP; total flavonoids, TF), carbohydrate content and photosynthesis of three varieties of the Malaysian medicinal herb Labisia pumila Benth. namely the varieties alata, pumila and lanceolata under CO(2) enrichment (1,200 µmol mol(-1)) combined with four levels of nitrogen fertilization (0, 90, 180 and 270 kg N ha(-1)). No varietal differences were observed, however, as the levels of nitrogen increased from 0 to 270 kg N ha(-1), the production of TP and TF decreased in the order leaves>roots>stems. The production of TP and TF was related to increased total non structural carbohydrate (TNC), where the increase in starch content was larger than that in sugar concentration. Nevertheless, the regression analysis exhibited a higher influence of soluble sugar concentration (r(2) = 0.88) than starch on TP and TF biosynthesis. Photosynthesis, on the other hand, displayed a significant negative relationship with TP and TF production (r(2) = -0.87). A decrease in photosynthetic rate with increasing secondary metabolites might be due to an increase in the shikimic acid pathway that results in enhanced production of TP and TF. Chlorophyll content exhibited very significant negative relationships with total soluble sugar, starch and total non structural carbohydrate.
    Matched MeSH terms: Photosynthesis*
  12. Takanashi S, Kosugi Y, Matsuo N, Tani M, Ohte N
    Tree Physiol., 2006 Dec;26(12):1565-78.
    PMID: 17169896
    Effects of heterogeneity in stomatal behavior on gas-exchange characteristics of leaves from four tree species growing in different climates, including temperate, tropical monsoon and tropical rain forest, were investigated by combining gas-exchange measurements and the pressure-infiltration method. Field observations indicated linear relationships between whole-leaf conductance and the ratio of infiltrated to non-infiltrated leaf area (open stomata area) in Dipterocarpus sublamellatus Foxw. and Neobalanocarpus heimii (King) Ashton in a tropical rain forest in Peninsular Malaysia, whereas the ratio of infiltrated to non-infiltrated area rapidly increased up to the whole-leaf conductance at which the entire leaf was infiltrated in Cinnamomum camphora Sieb. in a temperate evergreen forest in Japan and in Azadirachta indica Juss. in a tropical monsoon area in Thailand. These results strongly suggest small ranges in bell-shaped stomatal conductance distributions in C. camphora and A. indica and bimodal stomatal conductance distributions in D. sublamellatus and N. heimii. The values of normalized maximum carboxylation rate at 25 degrees C (V(cmax25)) derived from gas-exchange measurements were not constant, but decreased with decreasing whole-leaf conductance in D. sublamellatus and N. heimii. A gas-exchange model analysis revealed a linear relationship between whole-leaf conductance and the ratio of infiltrated to non-infiltrated leaf area for bimodal stomatal conductance distributions, whereas for bell-shaped distributions, the relationships were nonlinear. Midday depression of apparent V(cmax25) in these species was mainly caused by bimodal stomatal closure. The bimodal stomatal distribution model could also explain diurnal changes in photosynthetic assimilation and transpiration rates in these species.
    Matched MeSH terms: Photosynthesis/physiology*
  13. Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP
    Chem. Rev., 2016 06 22;116(12):7159-329.
    PMID: 27199146 DOI: 10.1021/acs.chemrev.6b00075
    As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and "earth-abundant" nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The construction and characteristics of each classification of the heterojunction system will be critically reviewed, namely metal-g-C3N4, semiconductor-g-C3N4, isotype g-C3N4/g-C3N4, graphitic carbon-g-C3N4, conducting polymer-g-C3N4, sensitizer-g-C3N4, and multicomponent heterojunctions. The band structures, electronic properties, optical absorption, and interfacial charge transfer of g-C3N4-based heterostructured nanohybrids will also be theoretically discussed based on the first-principles density functional theory (DFT) calculations to provide insightful outlooks on the charge carrier dynamics. Apart from that, the advancement of the versatile photoredox applications toward artificial photosynthesis (water splitting and photofixation of CO2), environmental decontamination, and bacteria disinfection will be presented in detail. Last but not least, this comprehensive review will conclude with a summary and some invigorating perspectives on the challenges and future directions at the forefront of this research platform. It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
    Matched MeSH terms: Photosynthesis*
  14. Alam MA, Juraimi AS, Rafii MY, Abdul Hamid A
    Biomed Res Int, 2015;2015:105695.
    PMID: 25802833 DOI: 10.1155/2015/105695
    13 selected purslane accessions were subjected to five salinity levels 0, 8, 16, 24, and 32 dS m(-1). Salinity effect was evaluated on the basis of biomass yield reduction, physiological attributes, and stem-root anatomical changes. Aggravated salinity stress caused significant (P < 0.05) reduction in all measured parameters and the highest salinity showed more detrimental effect compared to control as well as lower salinity levels. The fresh and dry matter production was found to increase in Ac1, Ac9, and Ac13 from lower to higher salinity levels but others were badly affected. Considering salinity effect on purslane physiology, increase in chlorophyll content was seen in Ac2, Ac4, Ac6, and Ac8 at 16 dS m(-1) salinity, whereas Ac4, Ac9, and Ac12 showed increased photosynthesis at the same salinity levels compared to control. Anatomically, stem cortical tissues of Ac5, Ac9, and Ac12 were unaffected at control and 8 dS m(-1) salinity but root cortical tissues did not show any significant damage except a bit enlargement in Ac12 and Ac13. A dendrogram was constructed by UPGMA based on biomass yield and physiological traits where all 13 accessions were grouped into 5 clusters proving greater diversity among them. The 3-dimensional principal component analysis (PCA) has also confirmed the output of grouping from cluster analysis. Overall, salinity stressed among all 13 purslane accessions considering biomass production, physiological growth, and anatomical development Ac9 was the best salt-tolerant purslane accession and Ac13 was the most affected accession.
    Matched MeSH terms: Photosynthesis/physiology
  15. Kenzo T, Ichie T, Yoneda R, Kitahashi Y, Watanabe Y, Ninomiya I, et al.
    Tree Physiol., 2004 Oct;24(10):1187-92.
    PMID: 15294766
    Photosynthetic rate, nitrogen concentration and morphological properties of canopy leaves were studied in 18 trees, comprising five dipterocarp species, in a tropical rain forest in Sarawak, Malaysia. Photosynthetic rate at light saturation (Pmax) differed significantly across species, varying from 7 to 18 micro mol m(-2) s(-1). Leaf nitrogen concentration and morphological properties, such as leaf blade and palisade layer thickness, leaf mass per area (LMA) and surface area of mesophyll cells per unit leaf area (Ames/A), also varied significantly across species. Among the relationships with leaf characteristics, Pmax had the strongest correlation with leaf mesophyll parameters, such as palisade cell layer thickness (r2 = 0.76, P < 0.001) and Ames/A (r2 = 0.73, P < 0.001). Leaf nitrogen concentration and Pmax per unit area also had a significant but weaker correlation (r2 = 0.46, P < 0.01), whereas Pmax had no correlation, or only weakly significant correlations, with leaf blade thickness and LMA. Shorea beccariana Burck, which had the highest P(max) of the species studied, also had the thickest palisade layer, with up to five or more layers. We conclude that interspecific variation in photosynthetic capacity in tropical rain forest canopies is influenced more by leaf mesophyll structure than by leaf thickness, LMA or leaf nitrogen concentration.
    Matched MeSH terms: Photosynthesis/physiology*
  16. Inoue Y, Ichie T, Kenzo T, Yoneyama A, Kumagai T, Nakashizuka T
    Tree Physiol., 2017 10 01;37(10):1301-1311.
    PMID: 28541561 DOI: 10.1093/treephys/tpx053
    Climate change exposes vegetation to unusual levels of drought, risking a decline in productivity and an increase in mortality. It still remains unclear how trees and forests respond to such unusual drought, particularly Southeast Asian tropical rain forests. To understand leaf ecophysiological responses of tropical rain forest trees to soil drying, a rainfall exclusion experiment was conducted on mature canopy trees of Dryobalanops aromatica Gaertn.f. (Dipterocarpaceae) for 4 months in an aseasonal tropical rain forest in Sarawak, Malaysia. The rainfall was intercepted by using a soft vinyl chloride sheet. We compared the three control and three treatment trees with respect to leaf water use at the top of the crown, including stomatal conductance (gsmax), photosynthesis (Amax), leaf water potential (predawn: Ψpre; midday: Ψmid), leaf water potential at turgor loss point (πtlp), osmotic potential at full turgor (π100) and a bulk modulus of elasticity (ε). Measurements were taken using tree-tower and canopy-crane systems. During the experiment, the treatment trees suffered drought stress without evidence of canopy dieback in comparison with the control trees; e.g., Ψpre and Ψmid decreased with soil drying. Minimum values of Ψmid in the treatment trees decreased during the experiment, and were lower than πtlp in the control trees. However, the treatment trees also decreased their πtlp by osmotic adjustment, and the values were lower than the minimum values of their Ψmid. In addition, the treatment trees maintained gs and Amax especially in the morning, though at midday, values decreased to half those of the control trees. Decreasing leaf water potential by osmotic adjustment to maintain gs and Amax under soil drying in treatment trees was considered to represent anisohydric behavior. These results suggest that D. aromatica may have high leaf adaptability to drought by regulating leaf water consumption and maintaining turgor pressure to improve its leaf water relations.
    Matched MeSH terms: Photosynthesis*
  17. Che-Othman MH, Millar AH, Taylor NL
    Plant Cell Environ, 2017 Dec;40(12):2875-2905.
    PMID: 28741669 DOI: 10.1111/pce.13034
    Salinity exerts a severe detrimental effect on crop yields globally. Growth of plants in saline soils results in physiological stress, which disrupts the essential biochemical processes of respiration, photosynthesis, and transpiration. Understanding the molecular responses of plants exposed to salinity stress can inform future strategies to reduce agricultural losses due to salinity; however, it is imperative that signalling and functional response processes are connected to tailor these strategies. Previous research has revealed the important role that plant mitochondria play in the salinity response of plants. Review of this literature shows that 2 biochemical processes required for respiratory function are affected under salinity stress: the tricarboxylic acid cycle and the transport of metabolites across the inner mitochondrial membrane. However, the mechanisms by which components of these processes are affected or react to salinity stress are still far from understood. Here, we examine recent findings on the signal transduction pathways that lead to adaptive responses of plants to salinity and discuss how they can be involved in and be affected by modulation of the machinery of energy metabolism with attention to the role of the tricarboxylic acid cycle enzymes and mitochondrial membrane transporters in this process.
    Matched MeSH terms: Photosynthesis/physiology
  18. Ibrahim MH, Jaafar HZ, Karimi E, Ghasemzadeh A
    ScientificWorldJournal, 2014;2014:360290.
    PMID: 24683336 DOI: 10.1155/2014/360290
    A split plot 3 by 4 experiment was designed to investigate and distinguish the relationships among production of secondary metabolites, soluble sugar, phenylalanine ammonia lyase (PAL; EC activity, leaf gas exchange, chlorophyll content, antioxidant activity (DPPH), and lipid peroxidation under three levels of CO2 (400, 800, and 1200 μ mol/mol) and four levels of light intensity (225, 500, 625, and 900 μ mol/m(2)/s) over 15 weeks in Labisia pumila. The production of plant secondary metabolites, sugar, chlorophyll content, antioxidant activity, and malondialdehyde content was influenced by the interactions between CO2 and irradiance. The highest accumulation of secondary metabolites, sugar, maliondialdehyde, and DPPH activity was observed under CO2 at 1200 μ mol/mol + light intensity at 225 μ mol/m(2)/s. Meanwhile, at 400 μ mol/mol CO2 + 900 μ mol/m(2)/s light intensity the production of chlorophyll and maliondialdehyde content was the highest. As CO2 levels increased from 400 to 1200 μ mol/mol the photosynthesis, stomatal conductance, f v /f m (maximum efficiency of photosystem II), and PAL activity were enhanced. The production of secondary metabolites displayed a significant negative relationship with maliondialdehyde indicating lowered oxidative stress under high CO2 and low irradiance improved the production of plant secondary metabolites that simultaneously enhanced the antioxidant activity (DPPH), thus improving the medicinal value of Labisia pumila under this condition.
    Matched MeSH terms: Photosynthesis/drug effects; Photosynthesis/physiology*; Photosynthesis/radiation effects
  19. Ishida A, Toma T, Matsumoto Y, Yap SK, Maruyama Y
    Tree Physiol., 1996 Sep;16(9):779-85.
    PMID: 14871685
    Dryobalanops aromatica Gaertn. f. is a major tropical canopy species in lowland tropical rain forests in Peninsular Malaysia. Diurnal changes in net photosynthetic rate (A) and stomatal conductance to water vapor (g(s)) were measured in fully expanded young and old leaves in the uppermost canopy (35 m above ground). Maximum A was 12 and 10 micro mol m(-2) s(-1) in young and old leaves, respectively; however, because of large variation in A among leaves, mean maximum A in young and old leaves was only 6.6 and 5.5 micro mol m(-2) s(-1), respectively. Both g(s) and A declined in young leaves when T(leaf) exceeded 34 degrees C and leaf-to-air vapor pressure deficit (DeltaW) exceeded 0.025, whereas in old leaves, g(s) and A did not start to decline until T(leaf) and DeltaW exceeded 36 degrees C and 0.035, respectively. Under saturating light conditions, A was linearly related to g(s). The coefficient of variation (CV) for the difference between the CO(2) concentrations of ambient air and the leaf intercellular air space (C(a) - C(i)) was smaller than the CV for A or g(s), suggesting that maximum g(s) was mainly controlled by mesophyll assimilation (A/C(i)). Minimum C(i)/C(a) ratios were relatively high (0.72-0.73), indicating a small drought-induced stomatal limitation to A and non-conservative water use in the uppermost canopy leaves.
    Matched MeSH terms: Photosynthesis
  20. Burgess AJ, Retkute R, Pound MP, Mayes S, Murchie EH
    Ann Bot, 2017 03 01;119(4):517-532.
    PMID: 28065926 DOI: 10.1093/aob/mcw242
    Background and Aims: Intercropping systems contain two or more species simultaneously in close proximity. Due to contrasting features of the component crops, quantification of the light environment and photosynthetic productivity is extremely difficult. However it is an essential component of productivity. Here, a low-tech but high-resolution method is presented that can be applied to single- and multi-species cropping systems to facilitate characterization of the light environment. Different row layouts of an intercrop consisting of Bambara groundnut ( Vigna subterranea ) and proso millet ( Panicum miliaceum ) have been used as an example and the new opportunities presented by this approach have been analysed.

    Methods: Three-dimensional plant reconstruction, based on stereo cameras, combined with ray tracing was implemented to explore the light environment within the Bambara groundnut-proso millet intercropping system and associated monocrops. Gas exchange data were used to predict the total carbon gain of each component crop.

    Key Results: The shading influence of the tall proso millet on the shorter Bambara groundnut results in a reduction in total canopy light interception and carbon gain. However, the increased leaf area index (LAI) of proso millet, higher photosynthetic potential due to the C4 pathway and sub-optimal photosynthetic acclimation of Bambara groundnut to shade means that increasing the number of rows of millet will lead to greater light interception and carbon gain per unit ground area, despite Bambara groundnut intercepting more light per unit leaf area.

    Conclusions: Three-dimensional reconstruction combined with ray tracing provides a novel, accurate method of exploring the light environment within an intercrop that does not require difficult measurements of light interception and data-intensive manual reconstruction, especially for such systems with inherently high spatial possibilities. It provides new opportunities for calculating potential productivity within multi-species cropping systems, enables the quantification of dynamic physiological differences between crops grown as monoculture and those within intercrops, and enables the prediction of new productive combinations of previously untested crops.

    Matched MeSH terms: Photosynthesis
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links