METHOD: The method based on constructing atlases for the portal and the hepatic veins bifurcations, the atlas is used to localize the corresponding vein in each segmented vasculature using atlas matching. Point-based registration is used to deform the mesh of atlas to the vein branch. Three-dimensional distance map of the hepatic veins is constructed; the fast marching scheme is applied to extract the centerlines. The centerlines of the labeled major veins are extracted by defining the starting and the ending points of each labeled vein. Centerline is extracted by finding the shortest path between the two points. The extracted centerline is used to define the trajectories to plot the required planes between the anatomical segments.
RESULTS: The proposed approach is validated on the IRCAD database. Using visual inspection, the method succeeded to extract the major veins centerlines. Based on that, the anatomic segments are defined according to Couinaud segmental anatomy.
CONCLUSION: Automatic liver segmental anatomy identification assists the surgeons for liver analysis in a robust and reproducible way. The anatomic segments with other liver structures construct a 3D visualization tool that is used by the surgeons to study clearly the liver anatomy and the extension of the cancer inside the liver.
CASE PRESENTATION: The liver progenitor cell proliferation is observed in a patient undergoing ALPPS for a metastatic hepatic tumour. Liver biopsy is acquired before and after ALPPS for the calculation of average number of liver progenitor cell under high magnification examination by stain of immunomarkers. This is the first in vivo evidence of growing liver progenitor cells demonstrated in a regenerating human liver.
METHODS: Data for 66 adult HPVG patients who visited the EDs of 2 research hospitals between October 1999 and April 2016 were analyzed. REMS, RAPS, and MEWS were calculated based on data in the ED, and probability of death was calculated for each patient based on these scores. The ability of REMS, RAPS, and MEWS to predict group mortality was assessed by using receiver operating characteristic (ROC) curve analysis and calibration analysis.
RESULTS: The sensitivity, specificity, and accuracy for each scoring system were 92.1%, 89.3%, and 90.9% for REMS, 86.8%, 82.1%, and 84.8% for RAPS, and 78.9%, 89.3%, and 83.3% for MEWS respectively. In the ROC curve analysis, the areas under the curve for REMS, RAPS, and MEWS were 0.929, 0.877, and 0.856 respectively.
CONCLUSION: Our study is the largest series performed in a population of adult HPVG patients in the ED. The results from this study demonstrate that REMS is superior in predicting the mortality of these patients compared to RAPS and MEWS. We therefore recommend that REMS be used for outcome prediction and risk stratification of adult HPVG in the ED.
Methods: A prospective cross-sectional study was carried out in this study. A total of the 408 participants were randomly recruited using a systematic method. According to the USG reports, the subjects who had normal USG report for liver, biliary system, and pancreas were described as normals, whereas the subjects who had hepatobiliary diseases such as fatty liver, liver cysts, hemangioma, cirrhosis, gallbladder wall thickening, acute cholecystitis, gallstones, and polyps were recorded as abnormal subjects.
Results: Of the 408 participants with a mean of 52.6 ± 8.4 years old. Of those, 294 (72.1%) participants were normal and 114 (27.9%) subjects were reported as abnormal. More than half of the study population was males, 52.9% versus 47.1% of females. There was a significant difference of liver length, head, and body of the pancreas between genders (P = 0.004, 0.002, and P < 0.001, respectively). Moreover, the pancreatic body only was significantly correlated with age (P = 0.026). There also was a significant difference of the liver length, head, and body of the pancreas between normal and abnormal subjects (P < 0.001, P = 0.007, and P < 0.001).
Conclusion: Liver length, diameter of the head, and body of the pancreas were significantly associated with gender and hepatobiliary diseases. In addition, only the diameter of the body of the pancreas was significantly correlated with age.
A 53-year-old woman presented with left-sided abdominal pain, nausea and vomiting for the past 3 months with associated loss of appetite and weight. On physical examination, there was a large, ill-defined, firm mass at the epigastrium. Ultrasonography showed heterogeneously hypoechoic filling defect within the dilated main portal vein. The filling defect showed florid signals on Doppler mode and it appeared to be an extension of a larger periportal mass. Contrast enhanced abdominal computed tomography confirmed a large distal gastric mass infiltrating into the periportal structures, including the main portal vein and the splenic vein. Esophagogastroduodenoscopy performed 2 days later showed an irregular, exophytic mass extending from the antrum into the first part of duodenum. The mass was deemed inoperable. Histopathological examination showed gastric adenocarcinoma. She was started on anticoagulant, chemotherapy and pain management. Follow-up computed tomography 4 months later showed liver metastases and formation of collateral blood vessels.