Displaying publications 1 - 20 of 159 in total

  1. Leow CY, Willis C, Hofmann A, Jones MK
    Br J Pharmacol, 2015 Apr;172(7):1653-63.
    PMID: 25176442 DOI: 10.1111/bph.12898
    Neglected tropical diseases are a group of some 17 diseases that afflict poor and predominantly rural people in developing nations. One significant disease that contributes to substantial morbidity in endemic areas is schistosomiasis, caused by infection with one of five species of blood fluke belonging to the trematode genus Schistosoma. Although there is one drug available for treatment of affected individuals in clinics, or for mass administration in endemic regions, there is a need for new therapies. A prominent target organ of schistosomes, either for drug or vaccine development, is the peculiar epithelial syncytium that forms the body wall (tegument) of this parasite. This dynamic layer is maintained and organized by concerted activity of a range of proteins, among which are the abundant tegumentary annexins. In this review, we will outline advances in structure-function analyses of these annexins, as a means to understanding tegument cell biology in host-parasite interaction and their potential exploitation as targets for anti-schistosomiasis therapies.
    Matched MeSH terms: Protein Conformation
  2. Dong AN, Tan BH, Pan Y, Ong CE
    J Pharm Pharm Sci, 2021;24:94-112.
    PMID: 33626316 DOI: 10.18433/jpps31305
    Since the discovery of its role in vitamin D metabolism, significant progress has been made in the understanding of gene organisation, protein structure, catalytic function, and genetic polymorphism of cytochrome P450 2R1 (CYP2R1). Located on chromosome 11p15.2, CYP2R1 possesses five exons, unlike most other CYP isoforms that carry nine exons. CYP2R1 crystal structure displays a fold pattern typical of a CYP protein, with 12 a-helices as its structural core, and b-sheets mostly arranged on one side, and the heme buried in the interior part of the protein. Overall, CYP2R1 structure adopts a closed conformation with the B' helix serving as a gate covering the substrate access channel, with the substrate vitamin D3 occupying a position with the side chain pointing toward the heme group. In liver, CYP2R1 25-hydroxylates vitamin D and serves as an important determinant of 25(OH)D level in the tissue and in circulation. While substrate profile has been well studied, inhibitor specificity for CYP2R1 requires further investigation. Both exonic and non-exonic single nucleotide polymorphisms (SNPs) have been reported in CYP2R1, including the CYP2R1*2 carrying Leu99Pro exchange, and a number of non-exonic SNPs with variable functional consequences in gene regulation. A non-exonic SNP, rs10741657, has its causal relationship with diseases established, including that of rickets, ovarian cancer, and multiple sclerosis. The role of other CYP2R1 SNPs in vitamin D deficiency and their causal link to other traits however remain uncertain currently and more studies are warranted to help identify possible physiological mechanisms underlying those complex traits.
    Matched MeSH terms: Protein Conformation
  3. Saadi S, Ghazali HM, Saari N, Abdulkarim SM
    Biophys Chem, 2021 06;273:106565.
    PMID: 33780688 DOI: 10.1016/j.bpc.2021.106565
    Therapeutic peptides derived proteins with alpha-reconformation states like antibody shape have shown potential effects in combating terrible diseases linked with earlier signs of angiogensis, mutagenesis and transgenesis. Alpha reconformation in material design refers to the folding of the peptide chains and their transitions under reversible chemical bonds of disulfide chemical bridges and further non-covalence lesions. Thus, the rational design of signal peptides into alpha-helix is intended in increasing the defending effects of peptides into cores like adjuvant antibiotic and/or vaccines. Thereby, the signal peptides are able in displaying multiple eradicating regions by changing crystal-depositions and deviation angles. These types of molecular structures could have multiple advantages in tracing disease syndromes and impurities by increasing the host defense against the fates of pathogens and viruses, eventually leading to the loss in signaling by increasing peptide susceptibility levels to folding and unfolding and therefore, formation of transgenic peptide models. Alpha reconformation peptides is aimed in triggering as well as other regulatory functions such as remodulating metabolic chain disorders of lipolysis and glucolysis by increasing the insulin and leptin resistance for best lipid storages and lipoprotein density distributions.
    Matched MeSH terms: Protein Conformation
  4. Nadzirin N, Willett P, Artymiuk PJ, Firdaus-Raih M
    Nucleic Acids Res, 2013 Jul;41(Web Server issue):W432-40.
    PMID: 23716645 DOI: 10.1093/nar/gkt431
    We describe a server that allows the interrogation of the Protein Data Bank for hypothetical 3D side chain patterns that are not limited to known patterns from existing 3D structures. A minimal side chain description allows a variety of side chain orientations to exist within the pattern, and generic side chain types such as acid, base and hydroxyl-containing can be additionally deployed in the search query. Moreover, only a subset of distances between the side chains need be specified. We illustrate these capabilities in case studies involving arginine stacks, serine-acid group arrangements and multiple catalytic triad-like configurations. The IMAAAGINE server can be accessed at http://mfrlab.org/grafss/imaaagine/.
    Matched MeSH terms: Protein Conformation*
  5. Choong YS, Tye GJ, Lim TS
    Protein J, 2013 Oct;32(7):505-11.
    PMID: 24096348 DOI: 10.1007/s10930-013-9514-1
    The limited sequence similarity of protein sequences with known structures has led to an indispensable need for computational technology to predict their structures. Structural bioinformatics (SB) has become integral in elucidating the sequence-structure-function relationship of a protein. This report focuses on the applications of SB within the context of protein engineering including its limitation and future challenges.
    Matched MeSH terms: Protein Conformation*
  6. Lim SW, Tan KJ, Azuraidi OM, Sathiya M, Lim EC, Lai KS, et al.
    Sci Rep, 2021 12 17;11(1):24206.
    PMID: 34921182 DOI: 10.1038/s41598-021-03624-x
    MYB proteins are highly conserved DNA-binding domains (DBD) and mutations in MYB oncoproteins have been reported to cause aberrant and augmented cancer progression. Identification of MYB molecular biomarkers predictive of cancer progression can be used for improving cancer management. To address this, a biomarker discovery pipeline was employed in investigating deleterious non-synonymous single nucleotide polymorphisms (nsSNPs) in predicting damaging and potential alterations on the properties of proteins. The nsSNP of the MYB family; MYB, MYBL1, and MYBL2 was extracted from the NCBI database. Five in silico tools (PROVEAN, SIFT, PolyPhen-2, SNPs&GO and PhD-SNP) were utilized to investigate the outcomes of nsSNPs. A total of 45 nsSNPs were predicted as high-risk and damaging, and were subjected to PMut and I-Mutant 2.0 for protein stability analysis. This resulted in 32 nsSNPs with decreased stability with a DDG score lower than - 0.5, indicating damaging effect. G111S, N183S, G122S, and S178C located within the helix-turn-helix (HTH) domain were predicted to be conserved, further posttranslational modifications and 3-D protein analysis indicated these nsSNPs to shift DNA-binding specificity of the protein thus altering the protein function. Findings from this study would help in the field of pharmacogenomic and cancer therapy towards better intervention and management of cancer.
    Matched MeSH terms: Protein Conformation
  7. Wang Y, Wei DQ, Wang JF
    J Chem Inf Model, 2010 May 24;50(5):875-8.
    PMID: 20443585 DOI: 10.1021/ci900458u
    T1 lipase is isolated from the palm Geobacillus zalihae strain T1 in Malaysia, functioning as a secreted protein responsible for the catalyzing hydrolysis of long-chain triglycerides into fatty acids and glycerol at high temperatures. In the current study, using 30 ns molecular dynamics simulations at different temperatures, an aqueous activation was detected for T1 lipase. This aqueous activation in T1 lipase was mainly caused by a double-flap movement mechanism. The double flaps were constituted by the hydrophobic helices 6 and 9. Helix 6 employed two major components with the hydrophilic part at the surface and the hydrophobic part inside. In the aqueous solution, the hydrophobic part could provide enough power for helix 6 to move away, driving the protein into an open configuration and exposing the catalytic triad. Our findings could provide structural evidence to support the double-flap movement, revealing the catalytic mechanism for T1 lipase.
    Matched MeSH terms: Protein Conformation
  8. Swift RV, Jusoh SA, Offutt TL, Li ES, Amaro RE
    J Chem Inf Model, 2016 05 23;56(5):830-42.
    PMID: 27097522 DOI: 10.1021/acs.jcim.5b00684
    Ensemble docking can be a successful virtual screening technique that addresses the innate conformational heterogeneity of macromolecular drug targets. Yet, lacking a method to identify a subset of conformational states that effectively segregates active and inactive small molecules, ensemble docking may result in the recommendation of a large number of false positives. Here, three knowledge-based methods that construct structural ensembles for virtual screening are presented. Each method selects ensembles by optimizing an objective function calculated using the receiver operating characteristic (ROC) curve: either the area under the ROC curve (AUC) or a ROC enrichment factor (EF). As the number of receptor conformations, N, becomes large, the methods differ in their asymptotic scaling. Given a set of small molecules with known activities and a collection of target conformations, the most resource intense method is guaranteed to find the optimal ensemble but scales as O(2(N)). A recursive approximation to the optimal solution scales as O(N(2)), and a more severe approximation leads to a faster method that scales linearly, O(N). The techniques are generally applicable to any system, and we demonstrate their effectiveness on the androgen nuclear hormone receptor (AR), cyclin-dependent kinase 2 (CDK2), and the peroxisome proliferator-activated receptor δ (PPAR-δ) drug targets. Conformations that consisted of a crystal structure and molecular dynamics simulation cluster centroids were used to form AR and CDK2 ensembles. Multiple available crystal structures were used to form PPAR-δ ensembles. For each target, we show that the three methods perform similarly to one another on both the training and test sets.
    Matched MeSH terms: Protein Conformation
  9. Hendrickson WA, Ward KB
    Biochem Biophys Res Commun, 1975 Oct 27;66(4):1349-56.
    PMID: 5
    Matched MeSH terms: Protein Conformation
  10. Anasir MI, Poh CL
    Front Microbiol, 2019;10:738.
    PMID: 31040832 DOI: 10.3389/fmicb.2019.00738
    Although vaccines have proven pivotal against arrays of infectious viral diseases, there are still no effective vaccines against many viruses. New structural insights into the viral envelope, protein conformation, and antigenic epitopes can guide the design of novel vaccines against challenging viruses such as human immunodeficiency virus (HIV), hepatitis C virus, enterovirus A71, and dengue virus. Recent studies demonstrated that applications of this structural information can solve some of the vaccine conundrums. This review focuses on recent advances in structure-based vaccine design, or structural vaccinology, for novel and innovative viral vaccine design.
    Matched MeSH terms: Protein Conformation
  11. Yusof NA, Kamaruddin S, Abu Bakar FD, Mahadi NM, Abdul Murad AM
    Cell Stress Chaperones, 2019 03;24(2):351-368.
    PMID: 30649671 DOI: 10.1007/s12192-019-00969-1
    Studies on TCP1-1 ring complex (TRiC) chaperonin have shown its indispensable role in folding cytosolic proteins in eukaryotes. In a psychrophilic organism, extreme cold temperature creates a low-energy environment that potentially causes protein denaturation with loss of activity. We hypothesized that TRiC may undergo evolution in terms of its structural molecular adaptation in order to facilitate protein folding in low-energy environment. To test this hypothesis, we isolated G. antarctica TRiC (GaTRiC) and found that the expression of GaTRiC mRNA in G. antarctica was consistently expressed at all temperatures indicating their importance in cell regulation. Moreover, we showed GaTRiC has the ability of a chaperonin whereby denatured luciferase can be folded to the functional stage in its presence. Structurally, three categories of residue substitutions were found in α, β, and δ subunits: (i) bulky/polar side chains to alanine or valine, (ii) charged residues to alanine, and (iii) isoleucine to valine that would be expected to increase intramolecular flexibility within the GaTRiC. The residue substitutions observed in the built structures possibly affect the hydrophobic, hydrogen bonds, and ionic and aromatic interactions which lead to an increase in structural flexibility. Our structural and functional analysis explains some possible structural features which may contribute to cold adaptation of the psychrophilic TRiC folding chamber.
    Matched MeSH terms: Protein Conformation
  12. Ghani NSA, Emrizal R, Moffit SM, Hamdani HY, Ramlan EI, Firdaus-Raih M
    Nucleic Acids Res, 2022 Jul 05;50(W1):W375-W383.
    PMID: 35639505 DOI: 10.1093/nar/gkac402
    The GrAfSS (Graph theoretical Applications for Substructure Searching) webserver is a platform to search for three-dimensional substructures of: (i) amino acid side chains in protein structures; and (ii) base arrangements in RNA structures. The webserver interfaces the functions of five different graph theoretical algorithms - ASSAM, SPRITE, IMAAAGINE, NASSAM and COGNAC - into a single substructure searching suite. Users will be able to identify whether a three-dimensional (3D) arrangement of interest, such as a ligand binding site or 3D motif, observed in a protein or RNA structure can be found in other structures available in the Protein Data Bank (PDB). The webserver also allows users to determine whether a protein or RNA structure of interest contains substructural arrangements that are similar to known motifs or 3D arrangements. These capabilities allow for the functional annotation of new structures that were either experimentally determined or computationally generated (such as the coordinates generated by AlphaFold2) and can provide further insights into the diversity or conservation of functional mechanisms of structures in the PDB. The computed substructural superpositions are visualized using integrated NGL viewers. The GrAfSS server is available at http://mfrlab.org/grafss/.
    Matched MeSH terms: Protein Conformation
  13. Han C, Zheng Y, Wang L, Zhou C, Wang J, He J, et al.
    J Sci Food Agric, 2023 May;103(7):3334-3345.
    PMID: 36786016 DOI: 10.1002/jsfa.12499
    BACKGROUND: Extracted proteins of alternative animal origin tend to present strong off-flavor perception due to physicochemical interactions of coextracted off-flavor compounds with proteins. To investigate the relationship between absorption behaviors of volatile aromas and the processes-induced variations in protein microstructures and molecular conformations, duck liver protein isolate (DLp) was subjected to heating (65/100 °C, 15 min) and ultra-high pressure (UHP, 100-500 MPa/10 min, 28 °C) treatments to obtain differential unfolded protein states.

    RESULTS: Heat and UHP treatments induced the unfolding of DLp to varied degrees, as revealed by fluorescence spectroscopy, ultraviolet-visible absorption, circular dichroism spectra and surface hydrophobicity measurements. Two types of heating-denatured states with varied unfolding degrees were obtained, while UHP at both levels of 100/500 MPa caused partial unfolding of DLp and the presence of a molten-globule state, which significantly enhanced the binding affinity between DLp and (E,E)-2,4-heptadienal. In particular, significantly modified secondary structures of DLp were observed in heating-denatured samples. Excessive denaturing and unfolding degrees resulted in no significant changes in the absorption behavior of the volatile ligand, as characterized by observations of fluorescence quenching and analysis of headspace concentrations.

    CONCLUSION: Defining process-induced conformational transition behavior of matrix proteins could be a promising strategy to regulate food flavor attributes and, particularly, to produce DLp coextracted with limited off-flavor components by modifying their interaction during extraction processes. © 2023 Society of Chemical Industry.

    Matched MeSH terms: Protein Conformation
  14. Ong HN, Arumugam B, Tayyab S
    J. Biochem., 2009 Dec;146(6):895-904.
    PMID: 19717823 DOI: 10.1093/jb/mvp136
    Using 100-fold molar excess of succinic anhydride, about 99% of lysine residues of hen egg white lysozyme (HEWL) were modified. Succinylated (S(99)) HEWL showed both charge and size homogeneity as judged by PAGE and gel filtration, respectively. Hydrodynamic parameters such as Stokes radius and frictional ratio (f/f(o)) showed more expanded conformation of S(99) HEWL compared to native HEWL as evident from the increase in Stokes radius (from 1.36 to 1.86 nm) and f/f(o) (from 0.86 to 1.15) values. Guanidine hydrochloride (GdnHCl) denaturation studies using fluorescence spectroscopy connoted a marked decrease in conformational stability of HEWL upon succinylation. Complete denaturation of S(99) HEWL was achieved at lower GdnHCl concentration ( approximately 3.8 M) compared to native HEWL ( approximately 5 M). Furthermore, free energy of stabilization (DeltaG(D)(H(2)O)) value also showed a notable decrease from 8,559 and 7,956 cal/mol (for native HEWL) to 4,404 and 4,669 cal/mol (for succinylated HEWL) using excitation at 280 and 295 nm, respectively. Both expanded conformation and decreased DeltaG(D)(H(2)O) can be attributed to the increase in the net negative charge on the protein upon succinylation. All these results manifested the importance of positively charged lysine residues in maintaining the conformational stability of HEWL through electrostatic interactions.
    Matched MeSH terms: Protein Conformation/drug effects
  15. Chong LC, Ganesan H, Yong CY, Tan WS, Ho KL
    PLoS One, 2019;14(2):e0211740.
    PMID: 30707739 DOI: 10.1371/journal.pone.0211740
    Macrobrachium rosenbergii nodavirus (MrNV) is the causative agent of white tail disease (WTD) which seriously impedes the production of the giant freshwater prawn and has a major economic impact. MrNV contains two segmented RNA molecules, which encode the RNA dependent RNA polymerase (RdRp) and the capsid protein (MrNV-CP) containing 371 amino acid residues. MrNV-CP comprises of the Shell (S) and the Protruding (P) domains, ranging from amino acid residues 1-252 and 253-371, respectively. The P-domain assembles into dimeric protruding spikes, and it is believed to be involved in host cell attachment and internalization. In this study, the recombinant P-domain of MrNV-CP was successfully cloned and expressed in Escherichia coli, purified with an immobilized metal affinity chromatography (IMAC) and size exclusion chromatography (SEC) up to ~90% purity. Characterization of the purified recombinant P-domain with SEC revealed that it formed dimers, and dynamic light scattering (DLS) analysis demonstrated that the hydrodynamic diameter of the dimers was ~6 nm. Circular dichroism (CD) analysis showed that the P-domain contained 67.9% of beta-sheets, but without alpha-helical structures. This is in good agreement with the cryo-electron microscopic analysis of MrNV which demonstrated that the P-domain contains only beta-stranded structures. Our findings of this study provide essential information for the production of the P-domain of MrNV-CP that will aid future studies particularly studies that will shed light on anti-viral drug discovery and provide an understanding of virus-host interactions and the viral pathogenicity.
    Matched MeSH terms: Protein Conformation, alpha-Helical; Protein Conformation, beta-Strand
  16. Halim NFAA, Ali MSM, Leow ATC, Rahman RNZRA
    Int J Biol Macromol, 2021 Jun 01;180:242-251.
    PMID: 33737181 DOI: 10.1016/j.ijbiomac.2021.03.072
    Fatty acid desaturase catalyzes the desaturation reactions by insertion of double bonds into the fatty acyl chain, producing unsaturated fatty acids. Though soluble fatty acid desaturases have been studied widely in advanced organisms, there are very limited studies of membrane fatty acid desaturases due to the difficulty of generating recombinant desaturase. Brassica napus is a rapeseed, which possesses a range of different membrane-bound desaturases capable of producing fatty acids including Δ3, Δ4, Δ8, Δ9, Δ12, and Δ15 fatty acids. The 1155 bp open reading frame of Δ12 fatty acid desaturase (FAD12) from Brassica napus codes for 383 amino acid residues with a molecular weight of 44 kDa. It was expressed in Escherichia coli at 37 °C in soluble and insoluble forms when induced with 0.5 mM IPTG. Soluble FAD12 has been purified using Ni2+-Sepharose affinity chromatography with a total protein yield of 0.728 mg/mL. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that desaturase activity of FAD12 could produce linoleic acid from oleic acid at a retention time of 17.6 with a conversion rate of 47%. Characterization of purified FAD12 revealed the optimal temperature of FAD12 was 50 °C with 2 mM preferred substrate concentration of oleic acid. Analysis of circular dichroism (CD) showed FAD12 was made up of 47.3% and 0.9% of alpha-helix and β-sheet secondary structures. The predicted Tm value was 50.2 °C.
    Matched MeSH terms: Protein Conformation, alpha-Helical; Protein Conformation, beta-Strand
  17. Eskandari A, Leow TC, Rahman MBA, Oslan SN
    Biomolecules, 2020 12 09;10(12).
    PMID: 33317024 DOI: 10.3390/biom10121649
    Antifreeze proteins (AFPs) are specific proteins, glycopeptides, and peptides made by different organisms to allow cells to survive in sub-zero conditions. AFPs function by reducing the water's freezing point and avoiding ice crystals' growth in the frozen stage. Their capability in modifying ice growth leads to the stabilization of ice crystals within a given temperature range and the inhibition of ice recrystallization that decreases the drip loss during thawing. This review presents the potential applications of AFPs from different sources and types. AFPs can be found in diverse sources such as fish, yeast, plants, bacteria, and insects. Various sources reveal different α-helices and β-sheets structures. Recently, analysis of AFPs has been conducted through bioinformatics tools to analyze their functions within proper time. AFPs can be used widely in various aspects of application and have significant industrial functions, encompassing the enhancement of foods' freezing and liquefying properties, protection of frost plants, enhancement of ice cream's texture, cryosurgery, and cryopreservation of cells and tissues. In conclusion, these applications and physical properties of AFPs can be further explored to meet other industrial players. Designing the peptide-based AFP can also be done to subsequently improve its function.
    Matched MeSH terms: Protein Conformation, alpha-Helical; Protein Conformation, beta-Strand
  18. Kameel NI, Wong YH, Shuib AS, Tayyab S
    Plant Physiol Biochem, 2016 Jan;98:57-63.
    PMID: 26642433 DOI: 10.1016/j.plaphy.2015.11.007
    Conformational analysis of champedak galactose-binding (CGB) lectin under different urea concentrations was studied in phosphate-buffered saline (pH 7.2) using far-ultraviolet circular dichroism (far-UV CD), tryptophan (Trp) fluorescence and ANS fluorescence. In all cases, CGB lectin displayed a two-step, three-state transition. The first transition (from the native state to the intermediate state) started at ∼2.0 M urea and ended at ∼4.5 M urea, while the second transition (from the intermediate state to the completely denatured state) was characterized by the start- and end-points at ∼5.75 M and ∼7.5 M urea, respectively, when analyzed by the emission maximum of Trp fluorescence. A marked increase in the Trp fluorescence, ANS fluorescence and -CD values at 218 nm (-CD218 nm) represented the first transition, whereas a decrease in these parameters defined the second transition. On the other hand, emission maximum of the Trp fluorescence showed a continuous increase throughout the urea concentration range. Transformation of tetramer into monomer represented the first transition, whereas the second transition reflected the unfolding of monomer. Far-UV CD, Trp fluorescence and ANS fluorescence spectra were used to characterize the native, the intermediate and the completely denatured states of CGB lectin, obtained at 0.0 M, 5.0 M and 9.0 M urea, respectively. The intermediate state was characterized by the presence of higher secondary structures, increased ANS binding as well as increased Trp fluorescence intensity. A gradual decrease in the hemagglutination activity of CGB lectin was observed with increasing urea concentrations, showing complete loss at 4.0 M urea.
    Matched MeSH terms: Protein Conformation/drug effects
  19. Tayyab S, Izzudin MM, Kabir MZ, Feroz SR, Tee WV, Mohamad SB, et al.
    J. Photochem. Photobiol. B, Biol., 2016 Sep;162:386-94.
    PMID: 27424099 DOI: 10.1016/j.jphotobiol.2016.06.049
    Binding characteristics of a promising anticancer drug, axitinib (AXT) to human serum albumin (HSA), the major transport protein in human blood circulation, were studied using fluorescence, UV-vis absorption and circular dichroism (CD) spectroscopy as well as molecular docking analysis. A gradual decrease in the Stern-Volmer quenching constant with increasing temperature revealed the static mode of the protein fluorescence quenching upon AXT addition, thus confirmed AXT-HSA complex formation. This was also confirmed from alteration in the UV-vis spectrum of HSA upon AXT addition. Fluorescence quenching titration results demonstrated moderately strong binding affinity between AXT and HSA based on the binding constant value (1.08±0.06×10(5)M(-1)), obtained in 10mM sodium phosphate buffer, pH7.4 at 25°C. The sign and magnitude of the enthalpy change (∆H=-8.38kJmol(-1)) as well as the entropy change (∆S=+68.21Jmol(-1)K(-1)) clearly suggested involvement of both hydrophobic interactions and hydrogen bonding in AXT-HSA complex formation. These results were well supported by molecular docking results. Three-dimensional fluorescence spectral results indicated significant microenvironmental changes around Trp and Tyr residues of HSA upon complexation with AXT. AXT binding to the protein produced significant alterations in both secondary and tertiary structures of HSA, as revealed from the far-UV and the near-UV CD spectral results. Competitive drug displacement results obtained with phenylbutazone (site I marker), ketoprofen (site II marker) and hemin (site III marker) along with molecular docking results suggested Sudlow's site I, located in subdomain IIA of HSA, as the preferred binding site of AXT.
    Matched MeSH terms: Protein Conformation/drug effects
  20. Sadat Mohajer F, Parvizpour S, Razmara J, Shahir Shamsir M
    J Biomol Struct Dyn, 2019 Feb;37(2):372-382.
    PMID: 29338614 DOI: 10.1080/07391102.2018.1427630
    Congenital myopathy is a broad category of muscular diseases with symptoms appearing at the time of birth. One type of congenital myopathy is Congenital Fiber Type Disproportion (CFTD), a severely debilitating disease. The G48D and G48C mutations in the D-loop and the actin-myosin interface are the two causes of CFTD. These mutations have been shown to significantly affect the structure and function of muscle fibers. To the author's knowledge, the effects of these mutations have not yet been studied. In this work, the power stroke structure of the head domain of myosin and the wild and mutated types of actin were modeled. Then, a MD simulation was run for the modeled structures to study the effects of these mutations on the structure, function, and molecular dynamics of actin. The wild and mutated actins docked with myosin showed differences in hydrogen bonding patterns, free binding energies, and hydrogen bond occupation frequencies. The G48D and G48C mutations significantly impacted the conformation of D-loops because of their larger size compared to Glycine and their ability to interfere with the polarity or hydrophobicity of this neutralized and hydrophobic loop. Therefore, the mutated loops were unable to fit properly into the hydrophobic groove of the adjacent G-actin. The abnormal structure of D-loops seems to result in the abnormal assembly of F-actins, giving rise to the symptoms of CFTD. It was also noted that G48C and G48D did not form hydrogen bonds with myosin in the residue 48 location. Nevertheless, in this case, muscles are unable to contract properly due to muscle atrophy.
    Matched MeSH terms: Protein Conformation*
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links