Displaying publications 1 - 20 of 25 in total

Abstract:
Sort:
  1. Sillitoe I, Andreeva A, Blundell TL, Buchan DWA, Finn RD, Gough J, et al.
    Nucleic Acids Res, 2020 Jan 08;48(D1):D314-D319.
    PMID: 31733063 DOI: 10.1093/nar/gkz967
    Genome3D (https://www.genome3d.eu) is a freely available resource that provides consensus structural annotations for representative protein sequences taken from a selection of model organisms. Since the last NAR update in 2015, the method of data submission has been overhauled, with annotations now being 'pushed' to the database via an API. As a result, contributing groups are now able to manage their own structural annotations, making the resource more flexible and maintainable. The new submission protocol brings a number of additional benefits including: providing instant validation of data and avoiding the requirement to synchronise releases between resources. It also makes it possible to implement the submission of these structural annotations as an automated part of existing internal workflows. In turn, these improvements facilitate Genome3D being opened up to new prediction algorithms and groups. For the latest release of Genome3D (v2.1), the underlying dataset of sequences used as prediction targets has been updated using the latest reference proteomes available in UniProtKB. A number of new reference proteomes have also been added of particular interest to the wider scientific community: cow, pig, wheat and mycobacterium tuberculosis. These additions, along with improvements to the underlying predictions from contributing resources, has ensured that the number of annotations in Genome3D has nearly doubled since the last NAR update article. The new API has also been used to facilitate the dissemination of Genome3D data into InterPro, thereby widening the visibility of both the annotation data and annotation algorithms.
    Matched MeSH terms: Proteins/classification
  2. Yap TW, Rabu A, Abu Bakar FD, Rahim RA, Mahadi NM, Illias RM, et al.
    ScientificWorldJournal, 2014;2014:642891.
    PMID: 24982972 DOI: 10.1155/2014/642891
    Lactococcus lactis is the most studied mesophilic fermentative lactic acid bacterium. It is used extensively in the food industry and plays a pivotal role as a cell factory and also as vaccine delivery platforms. The proteome of the Malaysian isolated L. lactis M4 dairy strain, obtained from the milk of locally bred cows, was studied to elucidate the physiological changes occurring between the growth phases of this bacterium. In this study, ultraperformance liquid chromatography nanoflow electrospray ionization tandem mass spectrometry (UPLC- nano-ESI-MS(E)) approach was used for qualitative proteomic analysis. A total of 100 and 121 proteins were identified from the midexponential and early stationary growth phases, respectively, of the L. lactis strain M4. During the exponential phase, the most important reaction was the generation of sufficient energy, whereas, in the early stationary phase, the metabolic energy pathways decreased and the biosynthesis of proteins became more important. Thus, the metabolism of the cells shifted from energy production in the exponential phase to the synthesis of macromolecules in the stationary phase. The resultant proteomes are essential in providing an improved view of the cellular machinery of L. lactis during the transition of growth phases and hence provide insight into various biotechnological applications.
    Matched MeSH terms: Bacterial Proteins/classification
  3. Nhari RM, Ismail A, Che Man YB
    J Food Sci, 2012 Jan;77(1):R42-6.
    PMID: 22260124 DOI: 10.1111/j.1750-3841.2011.02514.x
    Usage of gelatin in food products has been widely debated for several years, which is about the source of gelatin that has been used, religion, and health. As an impact, various analytical methods have been introduced and developed to differentiate gelatin whether it is made from porcine or bovine sources. The analytical methods comprise a diverse range of equipment and techniques including spectroscopy, chemical precipitation, chromatography, and immunochemical. Each technique can differentiate gelatins for certain extent with advantages and limitations. This review is focused on overview of the analytical methods available for differentiation of bovine and porcine gelatin and gelatin in food products so that new method development can be established.
    Matched MeSH terms: Dietary Proteins/classification
  4. Muda HM, Saad P, Othman RM
    Comput Biol Med, 2011 Aug;41(8):687-99.
    PMID: 21704312 DOI: 10.1016/j.compbiomed.2011.06.004
    Remote protein homology detection and fold recognition refer to detection of structural homology in proteins where there are small or no similarities in the sequence. To detect protein structural classes from protein primary sequence information, homology-based methods have been developed, which can be divided to three types: discriminative classifiers, generative models for protein families and pairwise sequence comparisons. Support Vector Machines (SVM) and Neural Networks (NN) are two popular discriminative methods. Recent studies have shown that SVM has fast speed during training, more accurate and efficient compared to NN. We present a comprehensive method based on two-layer classifiers. The 1st layer is used to detect up to superfamily and family in SCOP hierarchy using optimized binary SVM classification rules. It used the kernel function known as the Bio-kernel, which incorporates the biological information in the classification process. The 2nd layer uses discriminative SVM algorithm with string kernel that will detect up to protein fold level in SCOP hierarchy. The results obtained were evaluated using mean ROC and mean MRFP and the significance of the result produced with pairwise t-test was tested. Experimental results show that our approaches significantly improve the performance of remote protein homology detection and fold recognition for all three different version SCOP datasets (1.53, 1.67 and 1.73). We achieved 4.19% improvements in term of mean ROC in SCOP 1.53, 4.75% in SCOP 1.67 and 4.03% in SCOP 1.73 datasets when compared to the result produced by well-known methods. The combination of first layer and second layer of BioSVM-2L performs well in remote homology detection and fold recognition even in three different versions of datasets.
    Matched MeSH terms: Proteins/classification
  5. Nomikou K, Dovas CI, Maan S, Anthony SJ, Samuel AR, Papanastassopoulou M, et al.
    PLoS One, 2009;4(7):e6437.
    PMID: 19649272 DOI: 10.1371/journal.pone.0006437
    Bluetongue virus (BTV) is the 'type' species of the genus Orbivirus within the family Reoviridae. The BTV genome is composed of ten linear segments of double-stranded RNA (dsRNA), each of which codes for one of ten distinct viral proteins. Previous phylogenetic comparisons have evaluated variations in genome segment 3 (Seg-3) nucleotide sequence as way to identify the geographical origin (different topotypes) of BTV isolates. The full-length nucleotide sequence of genome Seg-3 was determined for thirty BTV isolates recovered in the eastern Mediterranean region, the Balkans and other geographic areas (Spain, India, Malaysia and Africa). These data were compared, based on molecular variability, positive-selection-analysis and maximum-likelihood phylogenetic reconstructions (using appropriate substitution models) to 24 previously published sequences, revealing their evolutionary relationships. These analyses indicate that negative selection is a major force in the evolution of BTV, restricting nucleotide variability, reducing the evolutionary rate of Seg-3 and potentially of other regions of the BTV genome. Phylogenetic analysis of the BTV-4 strains isolated over a relatively long time interval (1979-2000), in a single geographic area (Greece), showed a low level of nucleotide diversity, indicating that the virus can circulate almost unchanged for many years. These analyses also show that the recent incursions into south-eastern Europe were caused by BTV strains belonging to two different major-lineages: representing an 'eastern' (BTV-9, -16 and -1) and a 'western' (BTV-4) group/topotype. Epidemiological and phylogenetic analyses indicate that these viruses originated from a geographic area to the east and southeast of Greece (including Cyprus and the Middle East), which appears to represent an important ecological niche for the virus that is likely to represent a continuing source of future BTV incursions into Europe.
    Matched MeSH terms: Capsid Proteins/classification
  6. Pucker B, Pandey A, Weisshaar B, Stracke R
    PLoS One, 2020;15(10):e0239275.
    PMID: 33021974 DOI: 10.1371/journal.pone.0239275
    The R2R3-MYB genes comprise one of the largest transcription factor gene families in plants, playing regulatory roles in plant-specific developmental processes, defense responses and metabolite accumulation. To date MYB family genes have not yet been comprehensively identified in the major staple fruit crop banana. In this study, we present a comprehensive, genome-wide analysis of the MYB genes from Musa acuminata DH-Pahang (A genome). A total of 285 R2R3-MYB genes as well as genes encoding three other classes of MYB proteins containing multiple MYB repeats were identified and characterised with respect to structure and chromosomal organisation. Organ- and development-specific expression patterns were determined from RNA-Seq data. For 280 M. acuminata MYB genes for which expression was found in at least one of the analysed samples, a variety of expression patterns were detected. The M. acuminata R2R3-MYB genes were functionally categorised, leading to the identification of seven clades containing only M. acuminata R2R3-MYBs. The encoded proteins may have specialised functions that were acquired or expanded in Musa during genome evolution. This functional classification and expression analysis of the MYB gene family in banana establishes a solid foundation for future comprehensive functional analysis of MaMYBs and can be utilized in banana improvement programmes.
    Matched MeSH terms: Plant Proteins/classification
  7. Wang Z, Huang S, Jia C, Liu J, Zhang J, Xu B, et al.
    Plant Cell Rep, 2013 Sep;32(9):1373-80.
    PMID: 23652818 DOI: 10.1007/s00299-013-1449-7
    KEY MESSAGE: Three tau class MaGSTs responded to abiotic stress, MaGSTF1 and MaGSTL1 responded to signaling molecules, they may play an important role in the growth of banana plantlet. Glutathione S-transferases (GST) are multifunctional detoxification enzymes that participate in a variety of cellular processes, including stress responses. In this study, we report the molecular characteristics of five GST genes (MaGSTU1, MaGSTU2, MaGSTU3, MaGSTF1 and MaGSTL1) cloned from banana (Musa acuminate L. AAA group, cv. Cavendish) using a RACE-PCR-based strategy. The predicted molecular masses of these GSTs range from 23.4 to 27.7 kDa and their pIs are acidic. At the amino acid level, they share high sequence similarity with GSTs in the banana DH-Pahang (AA group) genome. Phylogenetic analysis showed that the deduced amino acid sequences of MaGSTs also have high similarity to GSTs of other plant species. Expression analysis by semi-quantitative RT-PCR revealed that these genes are differentially expressed in various tissues. In addition, their expression is regulated by various stress conditions, including exposure to signaling molecules, cold, salinity, drought and Fusarium oxysporum f specialis(f. Sp) cubense Tropical Race 4 (Foc TR4) infection. The expression of the tau class MaGSTs (MaGSTU1, MaGSTU2 and MaGSTU3) mainly responded to cold, salinity and drought while MaGSTF1 and MaGSTL1 expressions were upregulated by signaling molecules. Our findings suggest that MaGSTs play a key role in both development and abiotic stress responses.
    Matched MeSH terms: Plant Proteins/classification
  8. Ling JG, Mansor MH, Abdul Murad AM, Mohd Khalid R, Quay DHX, Winkler M, et al.
    J Biotechnol, 2020 Jan 10;307:55-62.
    PMID: 31545972 DOI: 10.1016/j.jbiotec.2019.09.008
    Carboxylic acid reductases (CARs) are attracting burgeoning attention as biocatalysts for organic synthesis of aldehydes and their follow-up products from economic carboxylic acid precursors. The CAR enzyme class as a whole, however, is still poorly understood. To date, relatively few CAR sequences have been reported, especially from fungal sources. Here, we sought to increase the diversity of the CAR enzyme class. Six new CAR sequences from the white-rot fungus Pycnoporus cinnabarinus were identified from genome-wide mining. Genome and gene clustering analysis suggests that these PcCAR enzymes play different natural roles in Basidiomycete systems, compared to their type II Ascomycete counterparts. The cDNA sequences of all six Pccar genes were deduced and analysis of their corresponding amino acid sequence showed that they encode for proteins of similar properties that possess a conserved modular functional tri-domain arrangement. Phylogenetic analyses showed that all PcCAR enzymes cluster together with the other type IV CARs. One candidate, PcCAR4, was cloned and over-expressed recombinantly in Escherichia coli. Subsequent biotransformation-based screening with a panel of structurally-diverse carboxylic acid substrates suggest that PcCAR4 possessed a more pronounced substrate specificity compared to previously reported CARs, preferring to reduce sterically-rigid carboxylic acids such as benzoic acid. These findings thus present a new functionally-distinct member of the CAR enzyme class.
    Matched MeSH terms: Fungal Proteins/classification
  9. Dawson NL, Sillitoe I, Lees JG, Lam SD, Orengo CA
    Methods Mol Biol, 2017;1558:79-110.
    PMID: 28150234 DOI: 10.1007/978-1-4939-6783-4_4
    This chapter describes the generation of the data in the CATH-Gene3D online resource and how it can be used to study protein domains and their evolutionary relationships. Methods will be presented for: comparing protein structures, recognizing homologs, predicting domain structures within protein sequences, and subclassifying superfamilies into functionally pure families, together with a guide on using the webpages.
    Matched MeSH terms: Proteins/classification
  10. Hassan H, Amiruddin MD, Weckwerth W, Ramli US
    Electrophoresis, 2019 01;40(2):254-265.
    PMID: 30370930 DOI: 10.1002/elps.201800232
    Palm oil is an edible vegetable oil derived from lipid-rich fleshy mesocarp tissue of oil palm (Elaeis guineensis Jacq.) fruit and is of global economic and nutritional relevance. While the understanding of oil biosynthesis in plants is improving, the fundamentals of oil biosynthesis in oil palm still require further investigations. To gain insight into the systemic mechanisms that govern oil synthesis during oil palm fruit ripening, the proteomics approach combining gel-based electrophoresis and mass spectrometry was used to profile protein changes and classify the patterns of protein accumulation during these complex physiological processes. Protein profiles from different stages of fruit ripening at 10, 12, 14, 15, 16, 18 and 20 weeks after anthesis (WAA) were analysed by two-dimensional gel electrophoresis (2DE). The proteome data were then visualised using a multivariate statistical analysis of principal component analysis (PCA) to get an overview of the proteome changes during the development of oil palm mesocarp. A total of 68 differentially expressed protein spots were successfully identified by matrix-assisted laser desorption/ionisation-time of flight (MALDI-TOF/TOF) and functionally classified using ontology analysis. Proteins related to lipid production, energy, secondary metabolites and amino acid metabolism are the most significantly changed proteins during fruit development representing potential candidates for oil yield improvement endeavors. Data are available via ProteomeXchange with identifier PXD009579. This study provides important proteome information for protein regulation during oil palm fruit ripening and oil synthesis.
    Matched MeSH terms: Plant Proteins/classification
  11. Golbabapour S, Majid NA, Hassandarvish P, Hajrezaie M, Abdulla MA, Hadi AH
    OMICS, 2013 Jun;17(6):283-96.
    PMID: 23692361 DOI: 10.1089/omi.2012.0105
    DNA methylation, histone modifications, and chromatin configuration are crucially important in the regulation of gene expression. Among these epigenetic mechanisms, silencing the expression of certain genes depending on developmental stage and tissue specificity is a key repressive system in genome programming. Polycomb (Pc) proteins play roles in gene silencing through different mechanisms. These proteins act in complexes and govern the histone methylation profiles of a large number of genes that regulate various cellular pathways. This review focuses on two main Pc complexes, Pc repressive complexes 1 and 2, and their phylogenetic relationship, structures, and function. The dynamic roles of these complexes in silencing will be discussed herein, with a focus on the recruitment of Pc complexes to target genes and the key factors involved in their recruitment.
    Matched MeSH terms: Polycomb-Group Proteins/classification
  12. Sahebi M, Hanafi MM, Abdullah SN, Rafii MY, Azizi P, Nejat N, et al.
    Biomed Res Int, 2014;2014:971985.
    PMID: 24516858 DOI: 10.1155/2014/971985
    Silicon (Si) is the second most abundant element in soil after oxygen. It is not an essential element for plant growth and formation but plays an important role in increasing plant tolerance towards different kinds of abiotic and biotic stresses. The molecular mechanism of Si absorption and accumulation may differ between plants, such as monocotyledons and dicotyledons. Silicon absorption and accumulation in mangrove plants are affected indirectly by some proteins rich in serine and proline amino acids. The expression level of the genes responsible for Si absorption varies in different parts of plants. In this study, Si is mainly observed in the epidermal roots' cell walls of mangrove plants compared to other parts. The present work was carried out to discover further information on Si stress responsive genes in Rhizophora apiculata, using the suppression subtractive hybridization technique. To construct the cDNA library, two-month-old seedlings were exposed to 0.5, 1, and 1.5 mM SiO2 for 15 hrs and for 1 to 6 days resulting in a total of 360 high quality ESTs gained. Further examination by RT-PCR and real-time qRT-PCR showed the expression of a candidate gene of serine-rich protein.
    Matched MeSH terms: Plant Proteins/classification
  13. Ashrafzadeh A, Karsani SA, Nathan S
    Int J Med Sci, 2013;10(12):1649-57.
    PMID: 24151436 DOI: 10.7150/ijms.6395
    Infertility is an important aspect of human and animal reproduction and still presents with much etiological ambiguity. As fifty percent of infertility is related to the male partner, molecular investigations on sperm and seminal plasma can lead to new knowledge on male infertility. Several comparisons between fertile and infertile human and other species sperm proteome have shown the existence of potential fertility markers. These proteins have been categorized into energy related, structural and other functional proteins which play a major role in sperm motility, capacitation and sperm-oocyte binding. The data from these studies show the impact of sperm proteome studies on identifying different valuable markers for fertility screening. In this article, we review recent development in unraveling sperm fertility related proteins.
    Matched MeSH terms: Proteins/classification
  14. Ramli AN, Azhar MA, Shamsir MS, Rabu A, Murad AM, Mahadi NM, et al.
    J Mol Model, 2013 Aug;19(8):3369-83.
    PMID: 23686283 DOI: 10.1007/s00894-013-1861-5
    A novel α-amylase was isolated successfully from Glaciozyma antarctica PI12 using DNA walking and reverse transcription-polymerase chain reaction (RT-PCR) methods. The structure of this psychrophilic α-amylase (AmyPI12) from G. antarctica PI12 has yet to be studied in detail. A 3D model of AmyPI12 was built using a homology modelling approach to search for a suitable template and to generate an optimum target-template alignment, followed by model building using MODELLER9.9. Analysis of the AmyPI12 model revealed the presence of binding sites for a conserved calcium ion (CaI), non-conserved calcium ions (CaII and CaIII) and a sodium ion (Na). Compared with its template-the thermostable α-amylase from Bacillus stearothermophilus (BSTA)-the binding of CaII, CaIII and Na ions in AmyPI12 was observed to be looser, which suggests that the low stability of AmyPI12 allows the protein to work at different temperature scales. The AmyPI12 amino acid sequence and model were compared with thermophilic α-amylases from Bacillus species that provided the highest structural similarities with AmyPI12. These comparative studies will enable identification of possible determinants of cold adaptation.
    Matched MeSH terms: Bacterial Proteins/classification; Fungal Proteins/classification
  15. Ng YL, Olivos-García A, Lim TK, Noordin R, Lin Q, Othman N
    Am J Trop Med Hyg, 2018 12;99(6):1518-1529.
    PMID: 30298805 DOI: 10.4269/ajtmh.18-0415
    Entamoeba histolytica is a protozoan parasite that causes amebiasis and poses a significant health risk for populations in endemic areas. The molecular mechanisms involved in the pathogenesis and regulation of the parasite are not well characterized. We aimed to identify and quantify the differentially abundant membrane proteins by comparing the membrane proteins of virulent and avirulent variants of E. histolytica HM-1:IMSS, and to investigate the potential associations among the differentially abundant membrane proteins. We performed quantitative proteomics analysis using isobaric tags for relative and absolute quantitation labeling, in combination with two mass spectrometry instruments, that is, nano-liquid chromatography (nanoLC)-matrix-assisted laser desorption/ionization-mass spectrometry/mass spectrometry and nanoLC-electrospray ionization tandem mass spectrometry. Overall, 37 membrane proteins were found to be differentially abundant, whereby 19 and 18 membrane proteins of the virulent variant of E. histolytica increased and decreased in abundance, respectively. Proteins that were differentially abundant include Rho family GTPase, calreticulin, a 70-kDa heat shock protein, and hypothetical proteins. Analysis by Protein ANalysis THrough Evolutionary Relationships database revealed that the differentially abundant membrane proteins were mainly involved in catalytic activities (29.7%) and metabolic processes (32.4%). Differentially abundant membrane proteins that were found to be involved mainly in the catalytic activities and the metabolic processes were highlighted together with their putative roles in relation to the virulence. Further investigations should be performed to elucidate the roles of these proteins in E. histolytica pathogenesis.
    Matched MeSH terms: Membrane Proteins/classification; Protozoan Proteins/classification
  16. Othman RM, Deris S, Illias RM
    J Biomed Inform, 2008 Feb;41(1):65-81.
    PMID: 17681495
    A genetic similarity algorithm is introduced in this study to find a group of semantically similar Gene Ontology terms. The genetic similarity algorithm combines semantic similarity measure algorithm with parallel genetic algorithm. The semantic similarity measure algorithm is used to compute the similitude strength between the Gene Ontology terms. Then, the parallel genetic algorithm is employed to perform batch retrieval and to accelerate the search in large search space of the Gene Ontology graph. The genetic similarity algorithm is implemented in the Gene Ontology browser named basic UTMGO to overcome the weaknesses of the existing Gene Ontology browsers which use a conventional approach based on keyword matching. To show the applicability of the basic UTMGO, we extend its structure to develop a Gene Ontology -based protein sequence annotation tool named extended UTMGO. The objective of developing the extended UTMGO is to provide a simple and practical tool that is capable of producing better results and requires a reasonable amount of running time with low computing cost specifically for offline usage. The computational results and comparison with other related tools are presented to show the effectiveness of the proposed algorithm and tools.
    Matched MeSH terms: Proteins/classification*
  17. Firdaus Raih M, Ahmad HA, Sharum MY, Azizi N, Mohamed R
    Appl. Bioinformatics, 2005;4(2):147-50.
    PMID: 16128617
    Bacterial proteases are an important group of enzymes that have very diverse biochemical and cellular functions. Proteases from prokaryotic sources also have a wide range of uses, either in medicine as pathogenic factors or in industry and therapeutics. ProLysED (Prokaryotic Lysis Enzymes Database), our meta-server integrated database of bacterial proteases, is a useful, albeit very niche, resource. The features include protease classification browsing and searching, organism-specific protease browsing, molecular information and visualisation of protease structures from the Protein Data Bank (PDB) as well as predicted protease structures.
    Matched MeSH terms: Bacterial Proteins/classification
  18. Ho WS, Ou HY, Yeo CC, Thong KL
    BMC Genomics, 2015;16:199.
    PMID: 25879448 DOI: 10.1186/s12864-015-1421-8
    Strains of Escherichia coli that are non-typeable by pulsed-field gel electrophoresis (PFGE) due to in-gel degradation can influence their molecular epidemiological data. The DNA degradation phenotype (Dnd(+)) is mediated by the dnd operon that encode enzymes catalyzing the phosphorothioation of DNA, rendering the modified DNA susceptible to oxidative cleavage during a PFGE run. In this study, a PCR assay was developed to detect the presence of the dnd operon in Dnd(+) E. coli strains and to improve their typeability. Investigations into the genetic environments of the dnd operon in various E. coli strains led to the discovery that the dnd operon is harboured in various diverse genomic islands.
    Matched MeSH terms: Escherichia coli Proteins/classification
  19. Alam MT, Vinayak S, Congpuong K, Wongsrichanalai C, Satimai W, Slutsker L, et al.
    Antimicrob Agents Chemother, 2011 Jan;55(1):155-64.
    PMID: 20956597 DOI: 10.1128/AAC.00691-10
    The emergence and spread of drug-resistant Plasmodium falciparum have been a major impediment for the control of malaria worldwide. Earlier studies have shown that similar to chloroquine (CQ) resistance, high levels of pyrimethamine resistance in P. falciparum originated independently 4 to 5 times globally, including one origin at the Thailand-Cambodia border. In this study we describe the origins and spread of sulfadoxine-resistance-conferring dihydropteroate synthase (dhps) alleles in Thailand. The dhps mutations and flanking microsatellite loci were genotyped for P. falciparum isolates collected from 11 Thai provinces along the Burma, Cambodia, and Malaysia borders. Results indicated that resistant dhps alleles were fixed in Thailand, predominantly being the SGEGA, AGEAA, and SGNGA triple mutants and the AGKAA double mutant (mutated codons are underlined). These alleles had different geographical distributions. The SGEGA alleles were found mostly at the Burma border, while the SGNGA alleles occurred mainly at the Cambodia border and nearby provinces. Microsatellite data suggested that there were two major genetic lineages of the triple mutants in Thailand, one common for SGEGA/SGNGA alleles and another one independent for AGEAA. Importantly, the newly reported SGNGA alleles possibly originated at the Thailand-Cambodia border. All parasites in the Yala province (Malaysia border) had AGKAA alleles with almost identical flanking microsatellites haplotypes. They were also identical at putatively neutral loci on chromosomes 2 and 3, suggesting a clonal nature of the parasite population in Yala. In summary, this study suggests multiple and independent origins of resistant dhps alleles in Thailand.
    Matched MeSH terms: Protozoan Proteins/classification
  20. Reginald K, Tan CL, Chen S, Yuen L, Goh SY, Chew FT
    Sci Rep, 2018 08 06;8(1):11743.
    PMID: 30082894 DOI: 10.1038/s41598-018-30224-z
    We previously identified an expressed sequence tag clone, Der f 22, showing 41% amino acid identity to published Der f 2, and show that both genes are possible paralogues. The objective of this study was to characterize the genomic, proteomic and immunological functions Der f 22 and Der f 2. The full-length sequence of Der f 2 and Der f 22 coded for mature proteins of 129 and 135 amino acids respectively, both containing 6 cysteine residues. Phylogenetic analysis of known group 2 allergens and their homologues from our expressed sequence tag library showed that Der f 22 is a paralogue of Der f 2. Both Der f 2 and Der f 22 were single gene products with one intron. Both allergens showed specific IgE-binding to over 40% of the atopic patients, with limited of cross-reactivity. Both allergens were detected at the gut region of D. farinae by immunostaining. Der f 22 is an important allergen with significant IgE reactivity among the atopic population, and should be considered in the diagnostic panel and evaluated as future hypoallergen vaccine therapeutic target.
    Matched MeSH terms: Arthropod Proteins/classification
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links