Displaying publications 1 - 20 of 21 in total

Abstract:
Sort:
  1. Shakiba M, Singh MJ, Sundararajan E, Zavvari A, Islam MT
    PLoS One, 2014;9(4):e95425.
    PMID: 24752285 DOI: 10.1371/journal.pone.0095425
    The main objective of Radio Frequency Identification systems is to provide fast identification for tagged objects. However, there is always a chance of collision, when tags transmit their data to the reader simultaneously. Collision is a time-consuming event that reduces the performance of RFID systems. Consequently, several anti-collision algorithms have been proposed in the literature. Dynamic Framed Slotted ALOHA (DFSA) is one of the most popular of these algorithms. DFSA dynamically modifies the frame size based on the number of tags. Since the real number of tags is unknown, it needs to be estimated. Therefore, an accurate tag estimation method has an important role in increasing the efficiency and overall performance of the tag identification process. In this paper, we propose a novel estimation technique for DFSA anti-collision algorithms that applies birthday paradox theory to estimate the number of tags accurately. The analytical discussion and simulation results prove that the proposed method increases the accuracy of tag estimation and, consequently, outperforms previous schemes.
    Matched MeSH terms: Radio Frequency Identification Device*
  2. Jalil J, Reaz MB, Bhuiyan MA, Rahman LF, Chang TG
    ScientificWorldJournal, 2014;2014:580385.
    PMID: 24587731 DOI: 10.1155/2014/580385
    In radio frequency identification (RFID) systems, performance degradation of phase locked loops (PLLs) mainly occurs due to high phase noise of voltage-controlled oscillators (VCOs). This paper proposes a low power, low phase noise ring-VCO developed for 2.42 GHz operated active RFID transponders compatible with IEEE 802.11 b/g, Bluetooth, and Zigbee protocols. For ease of integration and implementation of the module in tiny die area, a novel pseudodifferential delay cell based 3-stage ring oscillator has been introduced to fabricate the ring-VCO. In CMOS technology, 0.18 μm process is adopted for designing the circuit with 1.5 V power supply. The postlayout simulated results show that the proposed oscillator works in the tuning range of 0.5-2.54 GHz and dissipates 2.47 mW of power. It exhibits a phase noise of -126.62 dBc/Hz at 25 MHz offset from 2.42 GHz carrier frequency.
    Matched MeSH terms: Radio Frequency Identification Device/methods*
  3. Rokunuzzaman M, Islam MT, Arshad H, Jit Singh M, Misran N
    PLoS One, 2015;10(7):e0132530.
    PMID: 26177376 DOI: 10.1371/journal.pone.0132530
    This paper addresses the performance evaluation of a modified square loop antenna design for UHF RFID applications that is excited through a narrow feed line connected to a square loop, an impedance matching network. The square loop dimensions are modified to reach a conjugate impedance matching. A gap is fixed between the feed-lines to link the chip. To achieve impedance matching, the structures of the feed-line are optimized accordingly. In addition, the antenna consists of a straightforward geometry. An 11.9-meter maximum read range is achieved using a compact size of 80 × 44 mm2 and 3.2 W for the effective isotropic radiated power. Additional findings reveal that the proposed tag antenna is able to provide a stable resonance response in the near field of a large metallic surface.
    Matched MeSH terms: Radio Frequency Identification Device*
  4. Islam MT, Ullah MH, Singh MJ, Faruque MRI
    Materials (Basel), 2013 Jul 31;6(8):3226-3240.
    PMID: 28811432 DOI: 10.3390/ma6083226
    A new metasurface superstrate structure (MSS)-loaded dual band microstrip line-fed small patch antenna is presented in this paper. The proposed antenna was designed on a ceramic-filled bioplastic sandwich substrate with a high dielectric constant. The proposed 7 × 6 element, square-shaped, single-sided MSS significantly improved the bandwidth and gain of the proposed antenna. The proposed MSS incorporated a slotted patch antenna that effectively increased the measured operating bandwidth from 13.3% to 18.8% and from 14.8% to 23.2% in the lower and upper bands, respectively. Moreover, the average gain of the proposed MSS-based antenna was enhanced from 2.12 dBi to 3.02 dBi in the lower band and from 4.10 dBi to 5.28 dBi in the upper band compared to the patch antenna alone. In addition to the bandwidth and gain improvements, more directive radiation characteristics were also observed from the MSS antenna compared to the patch itself. The effects of the MSS elements and the ground plane length on the reflection coefficient of the antenna were analyzed and optimized. The overall performance makes the proposed antenna appropriate for RFID and WLAN applications.
    Matched MeSH terms: Radio Frequency Identification Device
  5. Rokunuzzaman M, Islam MT, Rowe WS, Kibria S, Jit Singh M, Misran N
    PLoS One, 2016;11(8):e0161293.
    PMID: 27533470 DOI: 10.1371/journal.pone.0161293
    A semi-circle looped vertically omnidirectional radiation (VOR) patterned tag antenna for UHF (919-923 MHz for Malaysia) frequency is designed to overcome the impedance mismatch issue in this paper. Two impedance matching feeding strips are used in the antenna structure to tune the input impedance of the antenna. Two dipole shaped meandered lines are used to achieve a VOR pattern. The proposed antenna is designed for 23-j224 Ω chip impedance. The antenna is suitable for 'place and tag' application. A small size of 77.68×35.5 mm2 is achieved for a read range performance of 8.3 meters using Malaysia regulated maximum power transfer of 2.0 W effective radiated power (ERP).
    Matched MeSH terms: Radio Frequency Identification Device*
  6. Kamaludin H, Mahdin H, Abawajy JH
    PLoS One, 2018;13(3):e0193951.
    PMID: 29565982 DOI: 10.1371/journal.pone.0193951
    Although Radio Frequency Identification (RFID) is poised to displace barcodes, security vulnerabilities pose serious challenges for global adoption of the RFID technology. Specifically, RFID tags are prone to basic cloning and counterfeiting security attacks. A successful cloning of the RFID tags in many commercial applications can lead to many serious problems such as financial losses, brand damage, safety and health of the public. With many industries such as pharmaceutical and businesses deploying RFID technology with a variety of products, it is important to tackle RFID tag cloning problem and improve the resistance of the RFID systems. To this end, we propose an approach for detecting cloned RFID tags in RFID systems with high detection accuracy and minimal overhead thus overcoming practical challenges in existing approaches. The proposed approach is based on consistency of dual hash collisions and modified count-min sketch vector. We evaluated the proposed approach through extensive experiments and compared it with existing baseline approaches in terms of execution time and detection accuracy under varying RFID tag cloning ratio. The results of the experiments show that the proposed approach outperforms the baseline approaches in cloned RFID tag detection accuracy.
    Matched MeSH terms: Radio Frequency Identification Device/methods*
  7. Mohd Nizulfika Kassim, Fazila Mohd Zawawi, Nur Safwati Mohd Nor
    MyJurnal
    Lack of parking space has become major contributing factor to traffic congestion
    which may affect the environmental condition due to incalculable amounts of wasted
    fuel and carbon emission. Congestion and parking are interrelated as looking for
    parking space may create additional delay and impair local circulation. The proposed
    automatic parking system which embedded with radio frequency identification (RFID)
    and internet of things (IoTs) module will introduce a monitoring platform for the
    parking space. This intelligent parking system makes it possible for the drivers to
    obtain information beforehand through their mobile hand phone application or any
    display available. This paper describes the mechanical design of automatic indoor
    parking space with the advancement of sensor networks application known as RFID.
    The design criterias were studied to develop a parking prototype which dealing with
    number of degree of freedom as well as movement mechanism. The result presented
    at the end of this paper was evaluated from the engineering analysis using the
    developed parking prototype to meet system performance as well as design safety
    factor.
    Matched MeSH terms: Radio Frequency Identification Device
  8. Salman KN, Ismail A, Raja Abdullah RSA, Saeedi T
    PLoS One, 2017;12(6):e0178388.
    PMID: 28570706 DOI: 10.1371/journal.pone.0178388
    In this paper, we present a novel compact, coplanar, tag antenna design for metallic objects. Electrically small antenna has designed for a UHF RFID (860-960 MHz) based on a proximity-coupled feed through. Furthermore, two symmetrical Via-loaded coplanar grounds fed by a U-shaped inductively coupled feed through an embedded transmission line. This configuration results in an antenna with dimensions of 31 × 19.5 × 3.065 mm3 at 915 MHz, and the total gain for the antenna is 0.12 dBi. The Via-loaded coplanar and U-shaped inductively coupled feeds allow the antenna to provide flexible tuning in terms of antenna impedance. In addition, a figure of merit is applied for the proposed tag antenna, and the results are presented. The read range is measured to be 4.2 m, which is very close to simulated values. This antenna measurement shows very good agreement with simulations.
    Matched MeSH terms: Radio Frequency Identification Device
  9. Islam MT, Alam T, Yahya I, Cho M
    Sensors (Basel), 2018 Nov 30;18(12).
    PMID: 30513701 DOI: 10.3390/s18124212
    In this paper, an inkjet-printed flexible Radio-Frequency Identification (RFID) tag antenna is proposed for an ultra-high frequency (UHF) sensor application. The proposed tag antenna facilitates a system-level solution for low-cost and faster mass production of RFID passive tag antenna. The tag antenna consists of a modified meander line radiator with a semi-circular shaped feed network. The structure is printed on photo paper using silver nanoparticle conductive ink. The generic design outline, as well as tag antenna performances for several practical application aspects are investigated. The simulated and measured results verify the coverage of universal UHF RFID band with an omnidirectional radiation pattern and a long-read range of 15 ft. In addition, the read range for different bending angles and lifetimes of the tag antenna are also demonstrated.
    Matched MeSH terms: Radio Frequency Identification Device
  10. Zailani S, Iranmanesh M, Nikbin D, Beng JK
    J Med Syst, 2015 Jan;39(1):172.
    PMID: 25503418 DOI: 10.1007/s10916-014-0172-4
    With today's highly competitive market in the healthcare industry, Radio Frequency Identification (RFID) is a technology that can be applied by hospitals to improve operational efficiency and to gain a competitive advantage over their competitors. The purpose of this study is to investigate the factors that may effect RFID adoption in Malaysia's healthcare industry. In addition, the moderating role of occupational level was tested. Data was collected from 223 managers as well as healthcare and supporting staffs. This data was analyzed using the partial least squares technique. The results show that perceived ease of use and usefulness, government policy, top management support, and security and privacy concerns have an effect on the intent to adopt RFID in hospitals. There is a wide gap between managers and healthcare staff in terms of the factors that influence RFID adoption. The results of this study will help decision makers as well as managers in the healthcare industry to better understand the determinants of RFID adoption. Additionally, it will assist in the process of RFID adoption, and therefore, spread the usage of RFID technology in more hospitals.
    Matched MeSH terms: Radio Frequency Identification Device*
  11. Mahdin H, Abawajy J
    Sensors (Basel), 2011;11(10):9863-77.
    PMID: 22163730 DOI: 10.3390/s111009863
    Radio frequency identification (RFID) systems are emerging as the primary object identification mechanism, especially in supply chain management. However, RFID naturally generates a large amount of duplicate readings. Removing these duplicates from the RFID data stream is paramount as it does not contribute new information to the system and wastes system resources. Existing approaches to deal with this problem cannot fulfill the real time demands to process the massive RFID data stream. We propose a data filtering approach that efficiently detects and removes duplicate readings from RFID data streams. Experimental results show that the proposed approach offers a significant improvement as compared to the existing approaches.
    Matched MeSH terms: Radio Frequency Identification Device/methods*
  12. Rahman LF, Marufuzzaman M, Alam L, Sidek LM, Reaz MBI
    PLoS One, 2020;15(2):e0225408.
    PMID: 32023244 DOI: 10.1371/journal.pone.0225408
    A high-voltage generator (HVG) is an essential part of a radio frequency identification electrically erasable programmable read-only memory (RFID-EEPROM). An HVG circuit is used to generate a regulated output voltage that is higher than the power supply voltage. However, the performance of the HVG is affected owing to the high-power dissipation, high-ripple voltage and low-pumping efficiency. Therefore, a regulator circuit consists of a voltage divider, comparator and a voltage reference, which are respectively required to reduce the ripple voltage, increase pumping efficiency and decrease the power dissipation of the HVG. Conversely, a clock driving circuit consists of the current-starved ring oscillator (CSRO), and the non- overlapping clock generator is required to drive the clock signals of the HVG circuit. In this study, the Mentor Graphics EldoSpice software package is used to design and simulate the HVG circuitry. The results showed that the designed CSRO dissipated only 4.9 μW at 10.2 MHz and that the phase noise was only -119.38 dBc/Hz at 1 MHz. Moreover, the proposed charge pump circuit was able to generate a maximum VPP of 13.53 V and it dissipated a power of only 31.01 μW for an input voltage VDD of 1.8 V. After integrating all the HVG modules, the results showed that the regulated HVG circuit was also able to generate a higher VPP of 14.59 V, while the total power dissipated was only 0.12 mW with a chip area of 0.044 mm2. Moreover, the HVG circuit produced a pumping efficiency of 90% and reduced the ripple voltage to <4 mV. Therefore, the integration of all the proposed modules in HVG ensured low-ripple programming voltages, higher pumping efficiency, and EEPROMs with lower power dissipation, and can be extensively used in low-power applications, such as in non-volatile memory, radiofrequency identification transponders, on-chip direct current DC-DC converters.
    Matched MeSH terms: Radio Frequency Identification Device*
  13. Eteng AA, Abdul Rahim SK, Leow CY, Chew BW, Vandenbosch GA
    PLoS One, 2016;11(2):e0148808.
    PMID: 26890878 DOI: 10.1371/journal.pone.0148808
    Q-factor constraints are usually imposed on conductor loops employed as proximity range High Frequency Radio Frequency Identification (HF-RFID) reader antennas to ensure adequate data bandwidth. However, pairing such low Q-factor loops in inductive energy transmission links restricts the link transmission performance. The contribution of this paper is to assess the improvement that is reached with a two-stage design method, concerning the transmission performance of a planar square loop relative to an initial design, without compromise to a Q-factor constraint. The first stage of the synthesis flow is analytical in approach, and determines the number and spacing of turns by which coupling between similar paired square loops can be enhanced with low deviation from the Q-factor limit presented by an initial design. The second stage applies full-wave electromagnetic simulations to determine more appropriate turn spacing and widths to match the Q-factor constraint, and achieve improved coupling relative to the initial design. Evaluating the design method in a test scenario yielded a more than 5% increase in link transmission efficiency, as well as an improvement in the link fractional bandwidth by more than 3%, without violating the loop Q-factor limit. These transmission performance enhancements are indicative of a potential for modifying proximity HF-RFID reader antennas for efficient inductive energy transfer and data telemetry links.
    Matched MeSH terms: Radio Frequency Identification Device
  14. Ganapathy SR, Salleh H, Azhar MKA
    Sci Rep, 2021 Feb 24;11(1):4458.
    PMID: 33627722 DOI: 10.1038/s41598-021-83776-y
    The demand for energy harvesting technologies has been increasing over the years that can be attributed to its significance to low power applications. One of the key problems associated with the available vibration-based harvester is the maximum peak power can only be achieved when the device frequency matches the source frequency to generate low usable power. Therefore, in this study, a magnetically-tunable hybrid piezoelectric-triboelectric energy harvester (MT-HPTEH) was designed and optimised. Four key design factors: mass placement, triboelectric surface area, extension length and magnetic stiffness were investigated and optimised. The voltage generation from piezoelectric and triboelectric mechanisms was determined individually to understand the effect of each design factor on the mechanisms. An output power of 659 µW at 180 kΩ at 44 Hz was obtained from the optimised MT-HPTEH with a theoretical-experimental discrepancy of less than 10%. The added magnetically-tunable feature enabled the harvester to work at the desired frequency range with an open circuit voltage between 7.800 and 20.314 V and a frequency range from 38 to 54 Hz. This MT-HPTEH can power at least six wireless sensor networks and can be used for low power applications such as RFID tags. Future work may include designing of energy-saving and sustainable harvester.
    Matched MeSH terms: Radio Frequency Identification Device
  15. Azmi N, Kamarudin LM, Zakaria A, Ndzi DL, Rahiman MHF, Zakaria SMMS, et al.
    Sensors (Basel), 2021 Mar 08;21(5).
    PMID: 33800174 DOI: 10.3390/s21051875
    Seasonal crops require reliable storage conditions to protect the yield once harvested. For long term storage, controlling the moisture content level in grains is challenging because existing moisture measuring techniques are time-consuming and laborious as measurements are carried out manually. The measurements are carried out using a sample and moisture may be unevenly distributed inside the silo/bin. Numerous studies have been conducted to measure the moisture content in grains utilising dielectric properties. To the best of authors' knowledge, the utilisation of low-cost wireless technology operating in the 2.4 GHz and 915 MHz ISM bands such as Wireless Sensor Network (WSN) and Radio Frequency Identification (RFID) have not been widely investigated. This study focuses on the characterisation of 2.4 GHz Radio Frequency (RF) transceivers using ZigBee Standard and 868 to 915 MHz UHF RFID transceiver for moisture content classification and prediction using Artificial Neural Network (ANN) models. The Received Signal Strength Indicator (RSSI) from the wireless transceivers is used for moisture content prediction in rice. Four samples (2 kg of rice each) were conditioned to 10%, 15%, 20%, and 25% moisture contents. The RSSI from both systems were obtained and processed. The processed data is used as input to different ANNs models such as Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Random Forest, and Multi-layer Perceptron (MLP). The results show that the Random Forest method with one input feature (RSSI_WSN) provides the highest accuracy of 87% compared to the other four models. All models show more than 98% accuracy when two input features (RSSI_WSN and RSSI_TAG2) are used. Hence, Random Forest is a reliable model that can be used to predict the moisture content level in rice as it gives a high accuracy even when only one input feature is used.
    Matched MeSH terms: Radio Frequency Identification Device
  16. Rosiah Osman, Abd. Rahman Ramli, Wan Azizun Wan Adnan, Intan Helina Hasan
    MyJurnal
    The management of a chemical inventory is necessary for safety purposes as well as for fulfilling regulatory compliance. In most academic laboratories, the management of chemicals is still being done manually, which is time-consuming. As a result, data are not updated and expired chemicals are unintentionally used. This research proposes that UHF Class 1 Gen 2 Radio Frequency Identification (RFID) technology be used in the development of a chemical inventory information system to ease chemical tracking as well as to shorten the inventory process time. An information system integrating RFID data and a web-based rule identification interface was developed. WAMP 2.2.17, PHP 5.3.5 and MySQL 5.5.8 were downloaded and a programming language was written to check the expiration date of the chemicals as well as to produce alert notification status. Wireless technology through GSM modem helped in producing alert messages using the Short Message System (SMS) of the nearly expired chemicals to the handphone of the person in charge in real time.
    Matched MeSH terms: Radio Frequency Identification Device
  17. Hannan MA, Arebey M, Begum RA, Basri H
    Waste Manag, 2011 Dec;31(12):2406-13.
    PMID: 21871788 DOI: 10.1016/j.wasman.2011.07.022
    This paper deals with a system of integration of Radio Frequency Identification (RFID) and communication technologies for solid waste bin and truck monitoring system. RFID, GPS, GPRS and GIS along with camera technologies have been integrated and developed the bin and truck intelligent monitoring system. A new kind of integrated theoretical framework, hardware architecture and interface algorithm has been introduced between the technologies for the successful implementation of the proposed system. In this system, bin and truck database have been developed such a way that the information of bin and truck ID, date and time of waste collection, bin status, amount of waste and bin and truck GPS coordinates etc. are complied and stored for monitoring and management activities. The results showed that the real-time image processing, histogram analysis, waste estimation and other bin information have been displayed in the GUI of the monitoring system. The real-time test and experimental results showed that the performance of the developed system was stable and satisfied the monitoring system with high practicability and validity.
    Matched MeSH terms: Radio Frequency Identification Device/methods*
  18. Iranmanesh M, Zailani S, Nikbin D
    Qual Manag Health Care, 2017 4 5;26(2):116-123.
    PMID: 28375959 DOI: 10.1097/QMH.0000000000000134
    Radio-frequency identification (RFID) has been proved to be an effective tool both for improving operational efficiency and for gaining competitive advantage in the health care industry despite its relatively low-usage rate in hospitals. The sustained use of RFID by health care professionals will promote its development in the long term. This study evaluates the acceptance continuance of RFID among health care professionals through technology continuance theory (TCT). Data were collected from 178 medical professionals in Malaysia and were then analyzed using the partial least squares technique. The analysis showed that the TCT model provided not only a thorough understanding of the continuance behavior of health care professionals toward RFID but also the attitudes, satisfaction, and perceived usefulness of professionals toward it. The results of this study are expected to assist policy makers and managers in the health care industry in implementing the RFID technology in hospitals by understanding the determinants of continuance of RFID usage intention.
    Matched MeSH terms: Radio Frequency Identification Device/utilization*
  19. Hannan MA, Abdulla Al Mamun M, Hussain A, Basri H, Begum RA
    Waste Manag, 2015 Sep;43:509-23.
    PMID: 26072186 DOI: 10.1016/j.wasman.2015.05.033
    In the backdrop of prompt advancement, information and communication technology (ICT) has become an inevitable part to plan and design of modern solid waste management (SWM) systems. This study presents a critical review of the existing ICTs and their usage in SWM systems to unfold the issues and challenges towards using integrated technologies based system. To plan, monitor, collect and manage solid waste, the ICTs are divided into four categories such as spatial technologies, identification technologies, data acquisition technologies and data communication technologies. The ICT based SWM systems classified in this paper are based on the first three technologies while the forth one is employed by almost every systems. This review may guide the reader about the basics of available ICTs and their application in SWM to facilitate the search for planning and design of a sustainable new system.
    Matched MeSH terms: Radio Frequency Identification Device
  20. Ibrahim MF, Ahmad Sa'ad FS, Zakaria A, Md Shakaff AY
    Sensors (Basel), 2016 Oct 27;16(11).
    PMID: 27801799
    The conventional method of grading Harumanis mango is time-consuming, costly and affected by human bias. In this research, an in-line system was developed to classify Harumanis mango using computer vision. The system was able to identify the irregularity of mango shape and its estimated mass. A group of images of mangoes of different size and shape was used as database set. Some important features such as length, height, centroid and parameter were extracted from each image. Fourier descriptor and size-shape parameters were used to describe the mango shape while the disk method was used to estimate the mass of the mango. Four features have been selected by stepwise discriminant analysis which was effective in sorting regular and misshapen mango. The volume from water displacement method was compared with the volume estimated by image processing using paired t-test and Bland-Altman method. The result between both measurements was not significantly different (P > 0.05). The average correct classification for shape classification was 98% for a training set composed of 180 mangoes. The data was validated with another testing set consist of 140 mangoes which have the success rate of 92%. The same set was used for evaluating the performance of mass estimation. The average success rate of the classification for grading based on its mass was 94%. The results indicate that the in-line sorting system using machine vision has a great potential in automatic fruit sorting according to its shape and mass.
    Matched MeSH terms: Radio Frequency Identification Device
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links