Displaying all 8 publications

Abstract:
Sort:
  1. Low KL, Idris A, Mohd Yusof N
    Food Chem, 2020 Mar 01;307:125631.
    PMID: 31634761 DOI: 10.1016/j.foodchem.2019.125631
    Lutein available in the current market is derived from marigold petals. However, extensive studies showed that microalgae are rich in lutein content and potentially exploitable for its dietary and other industrial applications. In this study, microwave assisted binary phase solvent extraction method (MABS) was the novel protocol being developed and optimized to achieve maximum lutein recovery from microalgae Scenedesmus sp. biomass. Results showed that 60% potassium hydroxide solution with acetone in the ratio of 0.1 (ml/ml) was the ideal binary phase solvent composition. Empirical model developed using response surface methodology revealed highest lutein content can be recovered through MABS extraction method at 55 °C treatment temperature, 36 min in extraction time, 0.7 (mg/ml) for biomass to solvent ratio, 250 Watt microwave power and 250 rpm stirring speed. This optimized novel protocol had increased the amount of lutein recovered by 130% and shorten the overall extraction time by 3-folds.
    Matched MeSH terms: Scenedesmus/chemistry*
  2. Al-Gheethi AA, Mohamed RM, Jais NM, Efaq AN, Abd Halid A, Wurochekke AA, et al.
    J Water Health, 2017 Oct;15(5):741-756.
    PMID: 29040077 DOI: 10.2166/wh.2017.080
    The present study aims to investigate the influence of Staphylococcus aureus, Escherichia coli and Enterococcus faecalis in public market wastewater on the removal of nutrients in terms of ammonium (NH4-) and orthophosphate (PO43) using Scenedesmus sp. The removal rates of NH4- and orthophosphate PO43- and batch kinetic coefficient of Scenedesmus sp. were investigated. The phycoremediation process was carried out at ambient temperature for 6 days. The results revealed that the pathogenic bacteria exhibited survival potential in the presence of microalgae but they were reduced by 3-4 log at the end of the treatment process. The specific removal rates of NH4- and PO43- have a strong relationship with initial concentration in the public market wastewater (R2 = 0.86 and 0.80, respectively). The kinetic coefficient of NH4- removal by Scenedesmus sp. was determined as k = 4.28 mg NH4- 1 log10 cell mL-1 d-1 and km = 52.01 mg L-1 (R2 = 0.94) while the coefficient of PO43- removal was noted as k = 1.09 mg NH4- 1 log10 cell mL-1 d-1 and km = 85.56 mg L-1 (R2 = 0.92). It can be concluded that Scenedesmus sp. has high competition from indigenous bacteria in the public market wastewater to remove nutrients, with a higher coefficient of removal of NH4- than PO43.
    Matched MeSH terms: Scenedesmus/growth & development; Scenedesmus/metabolism*
  3. Yaakob MA, Mohamed RMSR, Al-Gheethi A, Tiey A, Kassim AHM
    Environ Sci Pollut Res Int, 2019 Apr;26(12):12089-12108.
    PMID: 30827020 DOI: 10.1007/s11356-019-04633-0
    Production of Scenedesmus sp. biomass in chicken slaughterhouse wastewater (CSWW) is a promising alternative technique for commercial culture medium due to the high nutritional content of the generated biomass to be used as fish feeds. The current work deals with optimising of biomass production in CSWW using response surface methodology (RSM) as a function of two independent variables, namely temperature (10-30 °C) and photoperiod (6-24 h). The potential application of biomass yield as fish feeds was evaluated based on carbohydrate, protein and lipid contents. The results revealed that the best operating parameters for Scenedesmus sp. biomass production with high contents of carbohydrates, proteins and lipids were determined at 30 °C and after 24 h. The actual and predicted values were 2.47 vs. 3.09 g, 1.44 vs. 1.27 μg/mL, 29.9 vs. 31.60% and 25.75 vs. 28.44%, respectively. Moreover, the produced biomass has a high concentration of fatty acid methyl ester (FAME) as follows: 35.91% of C15:1; 17.58% of C24:1 and 14.11% of C18:1N9T. The biomass yields have 7.98% of eicosapentaenoic acid (EPA, C20:5N3) which is more appropriate as fish feeds. The Fourier transform infrared (FTIR) analysis of biomass revealed that the main functional groups included hydroxyl (OH), aldehyde (=C-H), alkanes and acyl chain groups. Scanning electron micrograph (SEM) and energy-dispersive X-ray spectroscopic analysis (EDS) indicated that the surface morphology and element distribution in biomass produced in BBM and CSWW were varied. The findings have indicated that the biomass produced in CSWW has high potential as fish feeds.
    Matched MeSH terms: Scenedesmus/growth & development*; Scenedesmus/metabolism
  4. Hamouda RA, Yeheia DS, Hamzah HA, Hussein MH
    Sains Malaysiana, 2016;45:467-476.
    Algae have recently received a lot of attention as a new biomass source for the production of renewable energy and an important bioremediation agent. This study was carried out to evaluate the potential of green algae Scenedesmus obliquus grow in different concentrations of wastewater and the improvement of cultivation conditions to produce biomass rich in sugar to produce bioethanol by fermentation processes. The highest sugar content of S. obliquus biomass was recorded for algae cultivated with 40 and 85% wastewater after 9 days under aeration condition with dark and light duration (44.5%). It was found that the highest removal efficiency of BOD and COD were 18% for S. obliquus grown under aeration condition. The highest ethanol efficiency of S. obliquus biomass hydrolysate was 20.33% at 4th day. The best condition of S. obliquus to grow efficiently was under aeration with light and dark durations, where it has high efficiency to remove heavy metals from wastewater in this condition.
    Matched MeSH terms: Scenedesmus
  5. Yong WK, Sim KS, Poong SW, Wei D, Phang SM, Lim PE
    3 Biotech, 2019 Aug;9(8):315.
    PMID: 31406637 DOI: 10.1007/s13205-019-1848-8
    An ecologically important tropical freshwater microalga, Scenedesmus quadricauda, was exposed to Ni toxicity under two temperature regimes, 25 and 35 °C to investigate the interactive effects of warming and different Ni concentrations (0.1, 1.0 and 10.0 ppm). The stress responses were assessed from the growth, photosynthesis, reactive oxygen species (ROS) generation and metabolomics aspects to understand the effects at both the physiological and biochemical levels. The results showed that the cell densities of the cultures were higher at 35 °C compared to 25 °C, but decreased with increasing Ni concentrations at 35 °C. In terms of photosynthetic efficiency, the maximum quantum yield of photosystem II (Fv/Fm) of S. quadricauda remained consistent across different conditions. Nickel concentration at 10.0 ppm affected the maximum rate of relative electron transport (rETRm) and saturation irradiance for electron transport (Ek) in photosynthesis. At 25 °C, the increase of non-photochemical quenching (NPQ) values in cells exposed to 10.0 ppm Ni might indicate the onset of thermal dissipation process as a self-protection mechanism against Ni toxicity. The combination of warming and Ni toxicity induced a strong oxidative stress response in the cells. The ROS level increased significantly by 40% after exposure to 10.0 ppm of Ni at 35 °C. The amount of Ni accumulated in the biomass was higher at 25 °C compared to 35 °C. Based on the metabolic profile, temperature contributed the most significant differentiation among the samples compared to Ni treatment and the interaction between the two factors. Amino acids, sugars and organic acids were significantly regulated by the combined factors to restore homeostasis. The most affected pathways include sulphur, amino acids, and nitrogen metabolisms. Overall, the results suggest that the inhibitory effect of Ni was lower at 35 °C compared to 25 °C probably due to lower metal uptake and primary metabolism restructuring. The ability of S. quadricauda to accumulate substantial amount of Ni and thrive at 35 °C suggests the potential use of this strain for phycoremediation and outdoor wastewater treatment.
    Matched MeSH terms: Scenedesmus
  6. Yee W, Abdul-Kadir R, Lee LM, Koh B, Lee YS, Chan HY
    3 Biotech, 2018 Aug;8(8):354.
    PMID: 30105179 DOI: 10.1007/s13205-018-1381-1
    In this work, a simple and inexpensive physical lysis method using a cordless drill fitted with a plastic pellet pestle and 150 mg of sterile sea sand was established for the extraction of DNA from six strains of freshwater microalgae. This lysis method was also tested for RNA extraction from two microalgal strains. Lysis duration between 15 and 120 s using the cetyltrimethyl ammonium bromide (CTAB) buffer significantly increased the yield of DNA from four microalgalstrains (Monoraphidium griffithii NS16, Scenedesmus sp. NS6, Scenedesmus sp. DPBC1 and Acutodesmus sp. DPBB10) compared to control. It was also found that grinding was not required to obtain DNA from two strains of microalgae (Choricystis sp. NPA14 and Chlamydomonas sp. BM3). The average DNA yield obtained using this lysis method was between 62.5 and 78.9 ng/mg for M. griffithii NS16, 42.2-247.0 ng/mg for Scenedesmus sp. NS6, 70.2-110.9 ng/mg for Scenedesmus sp. DPBC1 and 142.8-164.8 ng/mg for Acutodesmus sp. DPBB10. DNA obtained using this method was sufficiently pure for PCR amplification. Extraction of total RNA from M. griffithii NS16 and Mychonastes sp. NPD7 using this lysis method yielded high-quality RNA suitable for RT-PCR. This lysis method is simple, cheap and would enable rapid nucleic acid extraction from freshwater microalgae without requiring costly materials and equipment such as liquid nitrogen or beadbeaters, and would facilitate molecular studies on microalgae in general.
    Matched MeSH terms: Scenedesmus
  7. Quraishi KS, Bustam MA, Krishnan S, Aminuddin NF, Azeezah N, Ghani NA, et al.
    Chemosphere, 2017 Oct;184:642-651.
    PMID: 28624742 DOI: 10.1016/j.chemosphere.2017.06.037
    A promising method of Carbon dioxide (CO2) valorization is to use green microalgae photosynthesis to process biofuel. Two Phase Partitioning Bioreactors (TPPBR) offer the possibility to use non-aqueous phase liquids (NAPL) to enhance CO2 solubility; thus making CO2 available to maximize algae growth. This requires relatively less toxic hydrophobic Ionic Liquids (ILs) that comprise a new class of ionic compounds with remarkable physicochemical properties and thus qualifies them as NAPL candidates. This paper concerns the synthesis of ILs with octyl and butyl chains as well as different cations containing aromatic (imidazolium, pyridinium) and non-aromatic (piperidinum, pyrrolidinium) rings for CO2 absorption studies. The authors measured their respective toxicity levels on microalgae species, specifically, Scenedesmus quadricauda, Chlorella vulgaris and Botryococcus braunii. Results revealed that octyl-based ILs were more toxic than butyl-based analogues. Such was the case for bmim-PF6 at double saturation with an absorbance of 0.11, compared to Omim-PF6 at 0.17, bmim-NTf2 at 0.02, and Omim-NTf2 at 0.14, respectively. CO2 uptake results for ILs bearing octyl-based chains compared to the butyl analog were 54% (nCO2/nIL) (i.e., moles of CO2 moles of IL) and 38% (nCO2/nIL), respectively. Conclusively, 1-butyl-1-methylpiperidinium absorbed 13% (nCO2/nIL) and appeared the least toxic, having an absorbance of 0.25 at 688 nm (double saturation at 7 d) compared to 1-butyl-3-methylimidazolium, which showed the highest toxicity with zero absorbance. Accordingly, these findings suggest that 1-butyl-1-methylpiperidinium is capable of transporting CO2 to a system containing green microalgae without causing significant harm; thus allowing its use in TPPBR technology.
    Matched MeSH terms: Scenedesmus/drug effects
  8. Tevan, R., Jayakumar, Saravanan, Mohd Hasbi Ab. Rahim, Maniam, Gaaty Pragas, Govindan, Natanamurugaraj
    MyJurnal
    The world is facing a problem regarding the use of petroleum fuels that has led to a search for a suitable alternative fuel source. Researchers have come up with the idea of producing biofuel to overcome this problem. In this study, microalgae were explored as a high potential feedstock to produce biofuel. In order to produce a large quantity of biofuel with low cost at a short time, the manipulation of nutrients is a factor in microalgae cultivation. In this study, Iron (II) Chloride (FeCl2) was added to the nutrients to initiate a stressful condition during growth which contributes to the produce of lipid. Isolated microalgae species were identified as Scenedesmus sp. During mass cultivation, the microalgae cultures were scaled up to 2 L of culture. Three flasks of microalgae culture were labelled with S1, S2, and S3. Flask S1 acts as a control without the addition of FeCl2, while another two flasks acted as experimental flasks. Flask S2 was supplemented with 0.5 mg FeCl2 while Flask S3 was supplemented with 1.0 mg of FeCl2. With the addition of Iron (II) Chloride, microalgae entered a stationary phase at day 9 and day 10 as compared to the control flask which enters the stationary phase at day 7. This also affects the dry weight. Flask 3 produces 0.8658 g of microalgae powder compared to Flask 1 and 2 which produced 0.4649 g and 0.5357 g respectively. Lipid analysis was done by using GCMS and GCFID. Flask 3 produced various types of fatty acids which can be used for biodiesel production compared to other cultivates. In Flask 1, docosanoic acid which is a saturated fatty acid was detected. While in Flask 2 (S2), with the addition of 0.5 mg of FeCl2, docosapentaenoic acid was produced. In the last flask which involved the addition of 1.0 mg of FeCl2, more fatty acid was detected. In GC-FID data, 6 types of fatty acids were detected. Linolein acid, linolenic acid, stearidonic acid, docosapentaenoic acid, docosahexaenoic acid and docosanoic acid were produced at different retention times. Most of the fatty acids produced are polyunsaturated fatty acid (PUFA). In transesterification, the fatty acid reacts with methanol and acid catalyst. The reaction produces fatty acid methyl ester. In Flask 1, the control flask, without the addition of FeCl2, no fatty acid methyl esters (FAME) was produced. However, in Flask 2 and 3 which were added 0.5 mg FeCl2 and 1.0 mg FeCl2, n-hexadecanoic acid methyl ester which is also known as palmitic acid was produced. Palmitic fatty acid can be used for biodiesel production.
    Matched MeSH terms: Scenedesmus
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links