MATERIALS AND METHODS: A systematic literature search was performed through the SCOPUS database and Web of Science (WOS) database for relevant studies between 2014 and 2022. All published articles that are related to sex estimation from different types of bone, methods, landmarks, and sample sources (i.e., photographs, dry bones, and CT images) were included in this review. The main inclusion criteria were studies on (i) sex estimation; (ii) in South-East Asian populations; (iii) between the years 2014 and 2022; and (iv) in English.
RESULTS: The literature search identified 30 potentially relevant studies, of which 15 publications met all the inclusion criteria. From those research, 13 studies were related to the Thai population and two to the Malaysian population. Only one study was based on morphological traits, while the rest were based on a morphometric approach.
CONCLUSION: All studies found that sex estimation is populationspecific. Therefore, further research is recommended to explore more on population-specific sex estimation using different parts of bone.
METHODS: A retrospective analysis of prospectively collected data was conducted. Skeletal maturity was determined using Risser, SSMS, TOCI and CVM for each patient. Crosstabulations of axial vs. appendicular markers were formed to analyze their concordance and discordance. Logistic and logarithmic regression models were run to assess longitudinal growth (postoperative height gain and leg-length growth) and curve modulation (follow-up instrumented Cobb correction after index operation), respectively. Models were compared using Akaike information criterion (AIC).
RESULTS: 34 patients (32 F/2 M, mean age: 12.8 ± 1.5 years, mean follow-up: 47.7 (24-80) months) were included. The median preoperative maturity stages were: Risser: 1 (-1-4), SSMS: 4 (1-7), TOCI: 6 (1-8) and CVM: 4 (1-6). At latest follow-up, all patients reached skeletal maturity. Concordance and discordance were observed between axial vs. appendicular systems that demonstrated a range of possible distributions of CVM, where trunk peak height velocity occurred before, simultaneously with or after the standing height peak height velocity. R-squared values for Risser, SSMS, TOCI and CVM were 0.701, 0.783, 0.810 and 0.811, respectively, for prediction of final height; 0.759, 0.821, 0.831 and 0.775 for final leg-length, and 0.507, 0.588, 0.668 and 0.673 for curve modulation. Delta AIC values demonstrated that different skeletal maturity assessment methods provided distinctive information regarding follow-up height gain, leg-length growth and curve behavior.
CONCLUSIONS: Risser score provided considerably less information for all three outcome variables. TOCI and SSMS provided substantial information regarding remaining leg-length assessments, while in terms of assessment of total height gain and curve modulation after surgery, CVM and TOCI offered substantial information and SSMS offered strong information. Mutual use of axial and appendicular markers may provide valuable insight concerning timing of surgery and magnitude of surgical correction.
MATERIALS AND METHODS: 52 healthy volunteers were scanned in a 16-slice MDCT, and the volume of 104 sets of carpal bones was measured using a Syngo workstation (Both CT and workstation-Siemens Healthcare, Erlangen, Germany).
RESULTS: Male carpal bones were of higher volume compared to the female carpal bones (p<0.001). Area under the curve (AUC) assessment of responder-operator characteristics curves showed that the trapezium bone was best able to predict sex with an AUC of 0.986. At a trapezium bone volume of ⩾1.94cm(3), there was a 93.5% probability that the subject was male. Binary logistic regression analysis found that the highest accuracy was derived using the pisiform, trapezium and capitate bones. There was a strong relationship between sex prediction and grouping of the carpal bone volumes (Nagelkerke R(2)=0.923) with an overall prediction accuracy of 97%.
CONCLUSION: All 8 carpal bones exhibit sexual dimorphism to varying degrees. A binary regression analysis combining the 5 carpal bones with the highest predictive values for sex produces an accurate predictive model.