Displaying publications 1 - 20 of 168 in total

Abstract:
Sort:
  1. Kemung HM, Tan LT, Chan KG, Ser HL, Law JW, Lee LH, et al.
    Biomed Res Int, 2020;2020:6402607.
    PMID: 32258133 DOI: 10.1155/2020/6402607
    The mangrove ecosystem of Malaysia remains yet to be fully explored for potential microbes that produce biologically active metabolites. In the present study, a mangrove-derived Streptomyces sp. strain MUSC 14 previously isolated from the state of Pahang, Malaysia Peninsula, was studied for its potential in producing antioxidant metabolites. The identity of Streptomyces sp. strain MUSC14 was consistent with the genotypic and phenotypic characteristics of the Streptomyces genus. The antioxidant potential of Streptomyces sp. strain MUSC 14 was determined through screening of its methanolic extract against sets of antioxidant assays. The results were indicative of Streptomyces sp. strain MUSC 14 displaying strong antioxidant activity against ABTS, DPPH free radicals and metal chelating activity of 62.71 ± 3.30%, 24.71 ± 2.22%, and 55.82 ± 2.35%, respectively. The result of ferric reducing activity measured in terms of dose was equivalent to 2.35-2.45 μg of positive control ascorbic acid. Furthermore, there was a high correlation between the total phenolic content and the antioxidant activities with r = 0.979, r = 0.858, and r = 0.983 representing ABTS, DPPH, and metal chelation, respectively. Overall, the present study suggests that Streptomyces sp. strain MUSC 14 from mangrove forest soil has potential to produce antioxidant metabolites that can be further exploited for therapeutic application.
    Matched MeSH terms: Soil Microbiology*
  2. Mumtaz T, Khan MR, Hassan MA
    Micron, 2010 Jul;41(5):430-8.
    PMID: 20207547 DOI: 10.1016/j.micron.2010.02.008
    An outdoor soil burial test was carried out to evaluate the degradation of commercially available LDPE carrier bags in natural soil for up to 2 years. Biodegradability of low density polyethylene films in soil was monitored using both optical and scanning electron microscopy (SEM). After 7-9 months of soil exposure, microbial colonization was evident on the film surface. Exposed LDPE samples exhibit progressive changes towards degradation after 17-22 months. SEM images reveal signs of degradation such as exfoliation and formation of cracks on film leading to disintegration. The possible degradation mode and consequences on the use and disposal of LDPE films is discussed.
    Matched MeSH terms: Soil Microbiology*
  3. Wee WY, Tan TK, Jakubovics NS, Choo SW
    PLoS One, 2016;11(3):e0152682.
    PMID: 27031249 DOI: 10.1371/journal.pone.0152682
    Mycobacterium brisbanense is a member of Mycobacterium fortuitum third biovariant complex, which includes rapidly growing Mycobacterium spp. that normally inhabit soil, dust and water, and can sometimes cause respiratory tract infections in humans. We present the first whole-genome analysis of M. brisbanense UM_WWY which was isolated from a 70-year-old Malaysian patient. Molecular phylogenetic analyses confirmed the identification of this strain as M. brisbanense and showed that it has an unusually large genome compared with related mycobacteria. The large genome size of M. brisbanense UM_WWY (~7.7Mbp) is consistent with further findings that this strain has a highly variable genome structure that contains many putative horizontally transferred genomic islands and prophage. Comparative analysis showed that M. brisbanense UM_WWY is the only Mycobacterium species that possesses a complete set of genes encoding enzymes involved in the urea cycle, suggesting that this soil bacterium is able to synthesize urea for use as plant fertilizers. It is likely that M. brisbanense UM_WWY is adapted to live in soil as its primary habitat since the genome contains many genes associated with nitrogen metabolism. Nevertheless, a large number of predicted virulence genes were identified in M. brisbanense UM_WWY that are mostly shared with well-studied mycobacterial pathogens such as Mycobacterium tuberculosis and Mycobacterium abscessus. These findings are consistent with the role of M. brisbanense as an opportunistic pathogen of humans. The whole-genome study of UM_WWY has provided the basis for future work of M. brisbanense.
    Matched MeSH terms: Soil Microbiology*
  4. Jegathesan M, Rampal L, Lim YS
    Med J Malaysia, 1983 Dec;38(4):308-10.
    PMID: 6599988
    A survey on the incidence of Salmonellae in soil was conducted on 12 kindergartens in the Klang District, The organism. was isolated from five (three urban and two rural) kindergartens from one or more soil samples tested. Ten isolates comprising six serotypes, namely, Salmonella bareilly, S. haifa, S. abony, S. weltevreden, S. agona and S. stanley, were encountered. The possible role that these soil isolates may play in the transmission. of salmonellae is discussed. The need to use more than one media in the detection of salmonellae is emphasised.
    Matched MeSH terms: Soil Microbiology*
  5. Musa HI, Hassan L, Shamsuddin ZH, Panchadcharam C, Zakaria Z, Abdul Aziz S
    PLoS One, 2016;11(9):e0162348.
    PMID: 27635652 DOI: 10.1371/journal.pone.0162348
    Soil is considered to be a major reservoir of Burkholderia pseudomallei in the environment. This paper investigates soil physicochemical properties that may influence presence of B. pseudomallei in soil samples from small ruminant farms in Peninsular Malaysia. Soil samples were collected from the farms and cultured for B. pseudomallei. The texture, organic matter and water contents, pH, elemental contents, cation exchange capacities, carbon, sulfur and nitrogen contents were determined. Analysis of soil samples that were positive and negative for B. pseudomallei using multivariable logistic regression found that the odds of bacterial isolation from soil was significantly higher for samples with higher contents of iron (OR = 1.01, 95%CI = 1.00-1.02, p = 0.03), water (OR = 1.28, 95%CI = 1.05-1.55, p = 0.01) and clay (OR = 1.54, 95%CI = 1.15-2.06, p = 0.004) compared to the odds of isolation in samples with lower contents of the above variables. These three factors may have favored the survival of B. pseudomallei because iron regulates expression of respiratory enzymes, while water is essential for soil ecology and agent's biological processes and clay retains water and nutrients.
    Matched MeSH terms: Soil Microbiology*
  6. Griffiths DA
    Can J Microbiol, 1966 Feb;12(1):149-63.
    PMID: 5923132
    Matched MeSH terms: Soil Microbiology*
  7. Akita H, Kimura ZI, Yusoff MZM, Nakashima N, Hoshino T
    BMC Res Notes, 2017 Jul 06;10(1):249.
    PMID: 28683814 DOI: 10.1186/s13104-017-2565-1
    OBJECTIVE: A lignin-degrading bacterium, Burkholderia sp. CCA53, was previously isolated from leaf soil. The purpose of this study was to determine phenotypic and biochemical features of Burkholderia sp. CCA53.

    RESULTS: Multilocus sequence typing (MLST) analysis based on fragments of the atpD, gltD, gyrB, lepA, recA and trpB gene sequences was performed to identify Burkholderia sp. CCA53. The MLST analysis revealed that Burkholderia sp. CCA53 was tightly clustered with B. multivorans ATCC BAA-247T. The quinone and cellular fatty acid profiles, carbon source utilization, growth temperature and pH were consistent with the characteristics of B. multivorans species. Burkholderia sp. CCA53 was therefore identified as B. multivorans CCA53.

    Matched MeSH terms: Soil Microbiology*
  8. Carrión O, Gibson L, Elias DMO, McNamara NP, van Alen TA, Op den Camp HJM, et al.
    Microbiome, 2020 06 03;8(1):81.
    PMID: 32493439 DOI: 10.1186/s40168-020-00860-7
    BACKGROUND: Isoprene is the most abundantly produced biogenic volatile organic compound (BVOC) on Earth, with annual global emissions almost equal to those of methane. Despite its importance in atmospheric chemistry and climate, little is known about the biological degradation of isoprene in the environment. The largest source of isoprene is terrestrial plants, and oil palms, the cultivation of which is expanding rapidly, are among the highest isoprene-producing trees.

    RESULTS: DNA stable isotope probing (DNA-SIP) to study the microbial isoprene-degrading community associated with oil palm trees revealed novel genera of isoprene-utilising bacteria including Novosphingobium, Pelomonas, Rhodoblastus, Sphingomonas and Zoogloea in both oil palm soils and on leaves. Amplicon sequencing of isoA genes, which encode the α-subunit of the isoprene monooxygenase (IsoMO), a key enzyme in isoprene metabolism, confirmed that oil palm trees harbour a novel diversity of isoA sequences. In addition, metagenome-assembled genomes (MAGs) were reconstructed from oil palm soil and leaf metagenomes and putative isoprene degradation genes were identified. Analysis of unenriched metagenomes showed that isoA-containing bacteria are more abundant in soils than in the oil palm phyllosphere.

    CONCLUSION: This study greatly expands the known diversity of bacteria that can metabolise isoprene and contributes to a better understanding of the biological degradation of this important but neglected climate-active gas. Video abstract.

    Matched MeSH terms: Soil Microbiology*
  9. Syahir Habib, Mohd Yunus Abd Shukor, Nur Adeela Yasid, Wan Lutfi Wan Johari
    MyJurnal
    Petroleum hydrocarbons remain as the major contaminants that could be found across the world.
    Remediation approach through the utilisation of microbes as the bioremediation means widely
    recognised due to their outstanding values. As a result, scientific reports on the isolation and
    identification of new hydrocarbon-degrading strains were on the rise. Colourimetric-based assays
    are one of the fastest methods to identify the capability of hydrocarbon-degrading strains in both
    qualitative and quantitative assessment. In this study, the hydrocarbon-degrading potential of
    nine bacterial isolates was observed via 2,6-dichlorophenolindophenol (DCPIP) test. Two potent
    diesel-utilising isolates show a distinctive tendency to utilise aromatic (ADL15) and aliphatic
    (ADL36) hydrocarbons. Both isolates prove to be a good candidate for bioremediation of wide
    range of petroleum hydrocarbon components.
    Matched MeSH terms: Soil Microbiology
  10. Brearley FQ
    Data Brief, 2020 Apr;29:105112.
    PMID: 31993470 DOI: 10.1016/j.dib.2020.105112
    The soil fungal community of the Klang Gates quartz ridge in Malaysia was determined by ITS amplicon sequencing using the Illumina HiSeq platform. The community contained 2767 OTUs, 47% of which could not be assigned to a phylum, likely representing new lineages. Those that could be assigned were found within 5 phyla, 16 classes, 49 orders and 98 families with over 85% of these within the Ascomycota. Sequence data is available from the NCBI's Sequence Read Archive (PRJNA542066). This data illustrates the microbial diversity in a particularly nutrient poor tropical soil and can be used for broader-scale comparisons of microbial distributions.
    Matched MeSH terms: Soil Microbiology
  11. Li Y, Wen H, Chen L, Yin T
    PLoS One, 2014;9(12):e115024.
    PMID: 25502754 DOI: 10.1371/journal.pone.0115024
    The growing concern about the effectiveness of reclamation strategies has motivated the evaluation of soil properties following reclamation. Recovery of belowground microbial community is important for reclamation success, however, the response of soil bacterial communities to reclamation has not been well understood. In this study, PCR-based 454 pyrosequencing was applied to compare bacterial communities in undisturbed soils with those in reclaimed soils using chronosequences ranging in time following reclamation from 1 to 20 year. Bacteria from the Proteobacteria, Chloroflexi, Actinobacteria, Acidobacteria, Planctomycetes and Bacteroidetes were abundant in all soils, while the composition of predominant phyla differed greatly across all sites. Long-term reclamation strongly affected microbial community structure and diversity. Initial effects of reclamation resulted in significant declines in bacterial diversity indices in younger reclaimed sites (1, 8-year-old) compared to the undisturbed site. However, bacterial diversity indices tended to be higher in older reclaimed sites (15, 20-year-old) as recovery time increased, and were more similar to predisturbance levels nearly 20 years after reclamation. Bacterial communities are highly responsive to soil physicochemical properties (pH, soil organic matter, Total N and P), in terms of both their diversity and community composition. Our results suggest that the response of soil microorganisms to reclamation is likely governed by soil characteristics and, indirectly, by the effects of vegetation restoration. Mixture sowing of gramineae and leguminosae herbage largely promoted soil geochemical conditions and bacterial diversity that recovered to those of undisturbed soil, representing an adequate solution for soil remediation and sustainable utilization for agriculture. These results confirm the positive impacts of reclamation and vegetation restoration on soil microbial diversity and suggest that the most important phase of microbial community recovery occurs between 15 and 20 years after reclamation.
    Matched MeSH terms: Soil Microbiology*
  12. McGuire KL, D'Angelo H, Brearley FQ, Gedallovich SM, Babar N, Yang N, et al.
    Microb. Ecol., 2015 May;69(4):733-47.
    PMID: 25149283 DOI: 10.1007/s00248-014-0468-4
    Human land use alters soil microbial composition and function in a variety of systems, although few comparable studies have been done in tropical forests and tropical agricultural production areas. Logging and the expansion of oil palm agriculture are two of the most significant drivers of tropical deforestation, and the latter is most prevalent in Southeast Asia. The aim of this study was to compare soil fungal communities from three sites in Malaysia that represent three of the most dominant land-use types in the Southeast Asia tropics: a primary forest, a regenerating forest that had been selectively logged 50 years previously, and a 25-year-old oil palm plantation. Soil cores were collected from three replicate plots at each site, and fungal communities were sequenced using the Illumina platform. Extracellular enzyme assays were assessed as a proxy for soil microbial function. We found that fungal communities were distinct across all sites, although fungal composition in the regenerating forest was more similar to the primary forest than either forest community was to the oil palm site. Ectomycorrhizal fungi, which are important associates of the dominant Dipterocarpaceae tree family in this region, were compositionally distinct across forests, but were nearly absent from oil palm soils. Extracellular enzyme assays indicated that the soil ecosystem in oil palm plantations experienced altered nutrient cycling dynamics, but there were few differences between regenerating and primary forest soils. Together, these results show that logging and the replacement of primary forest with oil palm plantations alter fungal community and function, although forests regenerating from logging had more similarities with primary forests in terms of fungal composition and nutrient cycling potential. Since oil palm agriculture is currently the mostly rapidly expanding equatorial crop and logging is pervasive across tropical ecosystems, these findings may have broad applicability.
    Matched MeSH terms: Soil Microbiology*
  13. Muramatsu H, Murakami R, Ibrahim ZH, Murakami K, Shahab N, Nagai K
    J Antibiot (Tokyo), 2011 Sep;64(9):621-4.
    PMID: 21792208 DOI: 10.1038/ja.2011.57
    Matched MeSH terms: Soil Microbiology*
  14. Yamashita S, Hattori T, Ohkubo T, Nakashizuka T
    Mycol. Res., 2009 Oct;113(Pt 10):1200-7.
    PMID: 19682573 DOI: 10.1016/j.mycres.2009.08.004
    The spatial distribution of basidiocarps provides much information on the dispersal abilities, habitat preferences, and inter- and intraspecific interactions of aphyllophoraceous fungi. To reveal the spatial distribution and resource utilization patterns of aphyllophoraceous fungi in Malaysia, we conducted field observations in a primary forest in 2006 and analyzed the relationships between the abundance of eight dominant fungal species and various environmental factors. The topographical characteristics were significantly patchily distributed at the 100-m scale, whereas woody debris and most fungal species were distributed randomly. Although the dominant fungal species differed among the decay classes and diameters of the woody debris, the abundance of a few dominant species was significantly correlated with environmental factors. Although the latter factors might affect the spatial distribution of these fungi, the effects appear to be so small that they would not create an aggregated distribution at a few 100-m scales.
    Matched MeSH terms: Soil Microbiology*
  15. An J, Nam J, Kim B, Lee HS, Kim BH, Chang IS
    Bioresour Technol, 2015 Aug;190:175-81.
    PMID: 25941759 DOI: 10.1016/j.biortech.2015.04.071
    The effect of two different anode-embedding orientations, lengthwise- and widthwise-embedded anodes was explored, on the performance of sediment microbial fuel cells (SMFCs) using a chessboard anode. The maximum current densities and power densities in SMFCs having lengthwise-embedded anodes (SLA1-SLA10) varied from 38.2mA/m(2) to 121mA/m(2) and from 5.5mW/m(2) to 20mW/m(2). In comparison, the maximum current densities and maximum power densities in SMFCs having anodes widthwise-embedded between 0cm to 8cm (SWA2-SWA5) increased from 82mA/m(2) to 140mA/m(2) and from 14.7mW/m(2) to 31.1mW/m(2) as the anode depth became deeper. Although there was a difference in the performance among SWA5-SWA10, it was considered negligible. Hence, it is concluded that it is important to embed anodes widthwise at the specific anode depths, in order to improve of SMFC performance. Chessboard anode used in this work could be a good option for the determination of optimal anode depths.
    Matched MeSH terms: Soil Microbiology*
  16. Soon SH
    Mycopathologia, 1991 Mar;113(3):155-8.
    PMID: 2067562
    Two hundred and thirty soil samples from different localities were examined for the presence of geophilic keratinophilic fungi. Six species namely Microsporum gypseum--34 isolates, Chrysosporium keratinophilum--29, C. tropicum--20, Keratinophyton terreum--4, Trichophyton terrestre--8 and Chrysosporium species--3--were isolated. Most of these fungi were recovered from garden, field and river bank soil. The importance of these findings is briefly discussed.
    Matched MeSH terms: Soil Microbiology*
  17. PONNAMPALAM J
    Am J Trop Med Hyg, 1963 Sep;12:775-6.
    PMID: 14070771
    Matched MeSH terms: Soil Microbiology*
  18. Strauss JM, Groves MG, Mariappan M, Ellison DW
    Am J Trop Med Hyg, 1969 Sep;18(5):698-702.
    PMID: 5810797
    Matched MeSH terms: Soil Microbiology*
  19. Ellison DW, Baker HJ, Mariappan M
    Am J Trop Med Hyg, 1969 Sep;18(5):694-7.
    PMID: 5810796
    Matched MeSH terms: Soil Microbiology*
  20. Tin HS, Palaniveloo K, Anilik J, Vickneswaran M, Tashiro Y, Vairappan CS, et al.
    Microb. Ecol., 2018 Feb;75(2):459-467.
    PMID: 28779295 DOI: 10.1007/s00248-017-1043-6
    Decline in forest productivity due to forest conversion is defining the Bornean landscape. Responses of bacterial communities due to land-use changes are vital and could define our understanding of ecosystem functions. This study reports the changes in bacterial community structure in organic soil (0-5 cm; O-Horizon) and organic-mineral soil (5-15 cm; A-Horizon) across Maliau Basin Conservation Area old growth forest (MBOG), Fragment E logged forest (FELF) located in Kalabakan Forest Reserve to Benta Wawasan oil palm plantation (BWOP) using two-step PCR amplicon analysis of bacteria DNA on Illumina Miseq next generation sequencing. A total of 30 soil samples yielded 893,752-OTU reads at ≥97% similarity from 5,446,512 good quality sequences. Soil from BWOP plantation showed highest unshared OTUs for organic (49.2%) and organic-mineral (50.9%) soil. MBOG soil showed a drop in unshared OTUs between organic (48.6%) and organic-mineral (33.9%). At phylum level, Proteobacteria dominated MBOG but shifted to Actinobacteria in logged and plantation soil. Present findings also indicated that only FELF exhibited change in bacterial communities along the soil depth, moving from the organic to the organic-mineral layer. Both layers of BWOP plantation soils deviated from other forests' soil in β-diversity analysis. To our knowledge, this is the first report on transitions of bacterial community structures with different soil horizons in the tropical rainforest including Borneo, Sabah. Borneo tropical soils form a large reservoir for soil bacteria and future exploration is needed for fully understanding the diversity structure and their bacterial functional properties.
    Matched MeSH terms: Soil Microbiology*
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links