Displaying all 17 publications

Abstract:
Sort:
  1. Von Lau E, Gan S, Ng HK
    J Environ Manage, 2012 Sep 30;107:124-30.
    PMID: 22595079 DOI: 10.1016/j.jenvman.2012.04.029
    Experimental extraction tests are conducted to investigate feasibility of saturated palm kernel oil (PKO) and unsaturated soybean oil (SO) to extract polycyclic aromatic hydrocarbons (PAHs) from contaminated sand. The extraction rates and efficiencies for lowly contaminated (LC) and highly contaminated (HC) sands at temperatures of 30 °C and 70 °C are evaluated using empirical first order kinetic dissolution models. In LC sand, the extraction is dominated by the diffusion of PAHs adsorbed onto particle surfaces and the direct dissolution of PAH phase. In HC sand, a rapid diffusion of PAHs adsorbed onto particle surfaces and a direct dissolution of PAH phase occur followed by a slower diffusion of PAHs entrapped within the pores and micropores. Larger diffusion resistance during HC sand extractions results in an average 10.8% reduction in extraction efficiencies compared to LC sand. Increased temperature generally increases the mass transfer rates and extraction efficiencies. Additionally, the physicochemical properties of both oils and PAHs also determine the extent of PAH extraction into oil.
    Matched MeSH terms: Soybean Oil/chemistry*
  2. Chang SH, Teng TT, Ismail N, Alkarkhi AF
    J Hazard Mater, 2011 Jun 15;190(1-3):197-204.
    PMID: 21493005 DOI: 10.1016/j.jhazmat.2011.03.025
    The objectives of this work were to select suitable design parameters and optimize the operating parameters of a soybean oil-based bulk liquid membrane (BLM) for Cu(II) removal and recovery from aqueous solutions. The soybean oil-based BLM consists of an aqueous feed phase (Cu(II) source), an organic membrane phase (soybean oil (diluent), di-2-ethylhexylphosphoric acid (D2EHPA) (carrier) and tributylphosphate (phase modifier)) and an aqueous stripping phase (sulfuric acid solution (H(2)SO(4))). Effects of design parameters (stirring condition and stripping/membrane to feed/membrane interface area ratio) of soybean oil-based BLM on the Cu(II) removal and recovery from aqueous solutions were investigated and the suitable parameters were selected for further studies. Optimization of the operating parameters (D2EHPA concentration, H(2)SO(4) concentration, stirring speed, temperature and operating time) of soybean oil-based BLM for maximum percentage (%) recovery of Cu(II) was then conducted using Response Surface Methodology and the optimum parameters were determined. A regression model for % recovery was developed and its adequacy was evaluated. The experimental % recovery obtained under the optimum operating conditions was compared with the predicted one and they were found to agree satisfactorily with each other.
    Matched MeSH terms: Soybean Oil/chemistry*
  3. Zulkurnain M, Balasubramaniam VM, Maleky F
    Molecules, 2019 Aug 06;24(15).
    PMID: 31390764 DOI: 10.3390/molecules24152853
    Different fractions of fully hydrogenated soybean oil (FHSBO) in soybean oil (10-30% w/w) and the addition of 1% salt (sodium chloride) were used to investigate the effect of high-pressure treatments (HP) on the crystallization behaviors and physical properties of the binary mixtures. Sample microstructure, solid fat content (SFC), thermal and rheological properties were analyzed and compared against a control sample (crystallized under atmospheric condition). The crystallization temperature (Ts) of all model fats under isobaric conditions increased quadratically with pressure until reaching a pressure threshold. As a result of this change, the sample induction time of crystallization (tc) shifted from a range of 2.74-0.82 min to 0.72-0.43 min when sample crystallized above the pressure threshold under adiabatic conditions. At the high solid mass fraction, the addition of salt reduced the pressure threshold to induce crystallization during adiabatic compression. An increase in pressure significantly reduced mean cluster diameter in relation to the reduction of tc regardless of the solid mass fraction. In contrast, the sample macrostructural properties (SFC, storage modulus) were influenced more significantly by solid mass fractions rather than pressure levels. The creation of lipid gel was observed in the HP samples at 10% FHSBO. The changes in crystallization behaviors indicated that high-pressure treatments were more likely to influence crystallization mechanisms at low solid mass fraction.
    Matched MeSH terms: Soybean Oil/chemistry
  4. Ali MA, Islam MA, Othman NH, Noor AM, Ibrahim M
    Acta Sci Pol Technol Aliment, 2020 1 14;18(4):427-438.
    PMID: 31930793 DOI: 10.17306/J.AFS.0694
    BACKGROUND: Rice bran oil (RBO) contains significant amounts of micronutrients (oryzanol, tocotrienol, tocopherol, phytosterols etc.) that impart a high resistance to thermal oxidation of the oil. The high oxidative stability of RBO can make it a preferred oil to improve the oxidative and flavor stabilities of other oils rich in PUFAs. In this study, the changes in the oxidative status and fatty acid composition in soybean oil (SO) blended with RBO under extreme thermal conditions were evaluated.

    METHODS: The blends were prepared in a volume ratio of 10:90, 20:80, 40:60, and 60:40 (RBO:SO). The changes in the oxidative parameters and fatty acid composition of the samples during heating at frying temperature (170°C) were determined using analytical and instrumental methods. Oxidative alteration was also monitored by recording FTIR spectra of oil samples.

    RESULTS: The increase in oxidative parameters (free fatty acid, color, specific extinctions, peroxide value, p-anisidine value, and thiobarbituric acid value) was greater in pure SO as compared to RBO or blend oils during heating. This indicates that the SO samples incorporated with RBO have the least degradation, while pure SO has the highest. Blending resulted in a lower level of polyunsaturated fatty acids (PUFA)  with       a higher level of saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA). During heating, the relative content of PUFA decreased and that of SFA increased. However, the presence of RBO in SO slowed down the oxidative deterioration of PUFA. In FTIR, the peak intensities in SO were markedly changed in comparison with blend oils during heating. The reduction in the formation of oxidative products in SO during thermal treatment increased as the concentration of the RBO in SO increased; however, the levels of the protective effect of RBO did not increase steadily with an increase in its concentration.

    CONCLUSIONS: During thermal treatment, the generation of hydroperoxides, their degradation and formation of secondary oxidative products as evaluated by oxidative indices, fatty acids and IR absorbances were lower in blend oils compared to pure SO. In conclusion, RBO can significantly retard the process of lipid peroxidation in SO during heating at frying temperature.

    Matched MeSH terms: Soybean Oil/chemistry*
  5. Daniali G, Jinap S, Sanny M, Tan CP
    Food Chem, 2018 Apr 15;245:1-6.
    PMID: 29287315 DOI: 10.1016/j.foodchem.2017.10.070
    This work investigated the underlying formation of acrylamide from amino acids in frying oils during high temperatures and at different times via modeling systems. Eighteen amino acids were used in order to determine which one was more effective on acrylamide production. Significantly the highest amount of acrylamide was produced from asparagine (5987.5µg/kg) and the lowest from phenylalanine (9.25µg/kg). A constant amount of asparagine and glutamine in palm olein and soy bean oils was heated up in modelling system at different temperatures (160, 180 and 200°C) and times (1.5, 3, 4.5, 6, 7.5min). The highest amount of acrylamide was found at 200°C for 7.5min (9317 and 8511µg/kg) and lowest at 160°C for 1.5min (156 and 254µg/kg) in both frying oils and both amino acids. Direct correlations have been found between time (R2=0.884), temperature (R2=0.951) and amount of acrylamide formation, both at p<0.05.
    Matched MeSH terms: Soybean Oil/chemistry*
  6. Mohammed IA, Al-Mulla EA, Kadar NK, Ibrahim M
    J Oleo Sci, 2013;62(12):1059-72.
    PMID: 24292358
    Palm and soya oils were converted to monoglycerides via transesterification of triglycerides with glycerol by one step process to produce renewable polyols. Thermoplastic polyurethanes (TPPUs) were prepared from the reaction of the monoglycerides which act as polyol with 4,4'-methylenediphenyldiisocyanate (MDI) whereas, thermosetting polyurethanes (TSPUs) were prepared from the reaction of glycerol, MDI and monoglycerides in one pot. Characterization of the polyurethanes was carried out by FT-IR, (1)H NMR, and iodine value and sol-gel fraction. The TSPUs showed good thermal properties compared to TPPUs as well as TSPUs exhibits good properties in pencil hardness and adhesion, however poorer in flexural and impact strength compared to TPPUs. The higher percentage of cross linked fraction, the higher degree of cross linking occurred, which is due to the higher number of double bond presents in the TSPUs. These were reflected in iodine value test as the highest iodine value of the soya-based thermosetting polyurethanes confirmed the highest degree of cross linking. Polyurethanes based on soya oil showed better properties compared to palm oil. This study is a breakthrough development of polyurethane resins using palm and soya oils as one of the raw materials.
    Matched MeSH terms: Soybean Oil/chemistry*
  7. Fauzi SH, Rashid NA, Omar Z
    Food Chem, 2013 Apr 15;137(1-4):8-17.
    PMID: 23199984 DOI: 10.1016/j.foodchem.2012.09.086
    Blends of palm stearin (PS), palm kernel oil (PKO) and soybean oil (SBO) at certain proportions were formulated using a mixture design based on simplex-lattice (Design Expert 8.0.4 Stat-Ease Inc., Minneapolis, 2010). All the 10 oil blends were subjected to chemical interesterification (CIE) using sodium methoxide as the catalyst. The solid fat content (SFC), triacylglycerol (TAG) composition, thermal properties (DSC), polymorphism and microstructural properties were studied. Palm-based trans-free table margarine containing ternary mixture of PS/PKO/SBO [49/20/31 (w/w)], was optimally formulated through analysis of multiple isosolid diagrams and was found to have quite similar SMP and SFC profile as compared to the commercial table margarine. This study has shown chemical interesterification are effective in modifying the physicochemical properties of palm stearin, palm kernel oil, soybean oil and their mixtures.
    Matched MeSH terms: Soybean Oil/chemistry*
  8. Soo YN, Tan CP, Tan PY, Khalid N, Tan TB
    J Sci Food Agric, 2021 Apr;101(6):2455-2462.
    PMID: 33034060 DOI: 10.1002/jsfa.10871
    BACKGROUND: The popularity of coffee, the second most consumed beverage in the world, contributes to the high demand for liquid non-dairy creamer (LNDC). In this study, palm olein emulsions (as LNDCs) were investigated as alternatives to the more common soybean oil-based LNDCs. LNDCs were prepared via different homogenization pressures (100-300 bar) using different types of oil (palm olein and soybean oil) and concentrations of DATEM emulsifier (5-20 g kg-1 ).

    RESULTS: Increases in homogenization pressure and emulsifier concentration were observed to have significant (P soybean oil LNDCs prepared using 15 g kg-1 and 10 g kg-1 DATEM emulsifier, respectively, were determined to be the most stable (as observed throughout a 15-day storage period at ambient temperature of 28 ± 2 °C), with properties closest to those of a commercial LNDC. When added to black coffee, both LNDCs displayed a good whitening effect by increasing the L* value from 26.73 ± 0.16 (black coffee) to ≥40.82 ± 0.56 (black coffee + LNDCs). Sensory evaluation showed that there were no significant (P > 0.05) differences between the prepared and commercial LNDCs in terms of their color, appearance, and overall acceptability.

    CONCLUSION: Shelf-stable LNDCs with qualities comparable to commercial LNDC were successfully fabricated. Valuable insights into the effects of homogenization pressure, oil type, and emulsifier concentration, as well as functionality and consumer acceptance of the LNDCs when added into black coffee, were obtained. © 2020 Society of Chemical Industry.

    Matched MeSH terms: Soybean Oil/chemistry*
  9. Daniali G, Jinap S, Hajeb P, Sanny M, Tan CP
    Food Chem, 2016 Dec 01;212:244-9.
    PMID: 27374529 DOI: 10.1016/j.foodchem.2016.05.174
    The method of liquid chromatographic tandem mass spectrometry was utilized and modified to confirm and quantify acrylamide in heating cooking oil and animal fat. Heating asparagine with various cooking oils and animal fat at 180°C produced varying amounts of acrylamide. The acrylamide in the different cooking oils and animal fat using a constant amount of asparagine was measured. Cooking oils were also examined for peroxide, anisidine and iodine values (or oxidation values). A direct correlation was observed between oxidation values and acrylamide formation in different cooking oils. Significantly less acrylamide was produced in saturated animal fat than in unsaturated cooking oil, with 366ng/g in lard and 211ng/g in ghee versus 2447ng/g in soy oil, followed by palm olein with 1442ng/g.
    Matched MeSH terms: Soybean Oil/chemistry*
  10. Teh SS, Mah SH
    J Oleo Sci, 2018;67(11):1381-1387.
    PMID: 30404958 DOI: 10.5650/jos.ess18067
    The study was aimed at evaluating the effects of vegetable oils on emulsion stability. Palm olein (POo), olive oil (OO), safflower oil (SAF), grape seed oil (GSO), soybean oil (SBO) and sunflower oil (SFO) with different degree of saturation levels were chosen as major ingredient of oil phases. All the emulsions were stored at 4℃, 27℃ and 40℃ for 35 days and subjected to all the stability tests, including temperature variation, centrifuge test, cycle test, pH and slip melting point. The results indicated that POo exhibited the highest stability, followed by SAF, OO, GSO, SFO and SBO. In addition, the results implied that the degree of saturation levels of vegetable oils does give significant effect on emulsion stability based on the centrifuge testing for an approximate 30% usage level of oil. The POo-based emulsion exhibited good emulsion stability throughout the experimental period indicated that POo could be a good carrier oil for various applications in cosmetic industry.
    Matched MeSH terms: Soybean Oil/chemistry
  11. Ng CY, Kamisah Y, Faizah O, Jaarin K
    Int J Exp Pathol, 2012 Oct;93(5):377-87.
    PMID: 22974219 DOI: 10.1111/j.1365-2613.2012.00839.x
    Thermally oxidized oil generates reactive oxygen species that have been implicated in several pathological processes including hypertension. This study was to ascertain the role of inflammation in the blood pressure raising effect of heated soybean oil in rats. Male Sprague-Dawley rats were divided into four groups and were fed with the following diets, respectively, for 6 months: basal diet (control); fresh soybean oil (FSO); five-time-heated soybean oil (5HSO); or 10-time-heated soybean oil (10HSO). Blood pressure was measured at baseline and monthly using tail-cuff method. Plasma prostacyclin (PGI(2) ) and thromboxane A(2) (TXA(2) ) were measured prior to treatment and at the end of the study. After six months, the rats were sacrificed, and the aortic arches were dissected for morphometric and immunohistochemical analyses. Blood pressure was increased significantly in the 5HSO and 10HSO groups. The blood pressure was maintained throughout the study in rats fed FSO. The aortae in the 5HSO and 10HSO groups showed significantly increased aortic wall thickness, area and circumferential wall tension. 5HSO and 10HSO diets significantly increased plasma TXA(2) /PGI(2) ratio. Endothelial VCAM-1 and ICAM-1 were significantly increased in 5HSO, as well as LOX-1 in 10HSO groups. In conclusion, prolonged consumption of repeatedly heated soybean oil causes blood pressure elevation, which may be attributed to inflammation.
    Matched MeSH terms: Soybean Oil/chemistry
  12. Olusesan AT, Azura LK, Forghani B, Bakar FA, Mohamed AK, Radu S, et al.
    N Biotechnol, 2011 Oct;28(6):738-45.
    PMID: 21238617 DOI: 10.1016/j.nbt.2011.01.002
    Thermostable lipase produced by a genotypically identified extremophilic Bacillus subtilis NS 8 was purified 500-fold to homogeneity with a recovery of 16% by ultrafiltration, DEAE-Toyopearl 650M and Sephadex G-75 column. The purified enzyme showed a prominent single band with a molecular weight of 45 kDa. The optimum pH and temperature for activity of lipase were 7.0 and 60°C, respectively. The enzyme was stable in the pH range between 7.0 and 9.0 and temperature range between 40 and 70°C. It showed high stability with half-lives of 273.38 min at 60°C, 51.04 min at 70°C and 41.58 min at 80°C. The D-values at 60, 70 and 80°C were 788.70, 169.59 and 138.15 min, respectively. The enzyme's enthalpy, entropy and Gibb's free energy were in the range of 70.07-70.40 kJ mol(-1), -83.58 to -77.32 kJ mol(-1)K(-1) and 95.60-98.96 kJ mol(-1), respectively. Lipase activity was slightly enhanced when treated with Mg(2+) but there was no significant enhancement or inhibition of the activity with Ca(2+). However, other metal ions markedly inhibited its activity. Of all the natural vegetable oils tested, it had slightly higher hydrolytic activity on soybean oil compared to other oils. On TLC plate, the enzyme showed non-regioselective activity for triolein hydrolysis.
    Matched MeSH terms: Soybean Oil/chemistry*
  13. Ima-Nirwana S, Ahmad SN, Yee LJ, Loh HC, Yew SF, Norazlina M, et al.
    Singapore Med J, 2007 Mar;48(3):200-6.
    PMID: 17342287
    The short-term and long- term effects of heated soy oil on bone metabolism in ovariectomised Sprague-Dawley rats were studied.
    Matched MeSH terms: Soybean Oil/chemistry
  14. Adam SK, Das S, Soelaiman IN, Umar NA, Jaarin K
    Tohoku J Exp Med, 2008 Jul;215(3):219-26.
    PMID: 18648182
    Repeated heating of soy oil may promote lipid peroxidation. Oxidized unsaturated fatty acids may contribute to the pathogenesis of atherosclerosis, especially in estrogen-deficient states. This study was performed to explore the deleterious effects of repeatedly heated soy oil on the development of atherosclerosis using ovariectomized rats, which represent an estrogen-deficient state. Twenty-four female Sprague-Dawley rats were ovariectomized and were divided equally into four groups. The control group was fed with 2% cholesterol diet without any oil. The three treatment groups each received 2% cholesterol diet fortified with fresh, once-heated or five-times-heated (repeatedly heated) soy oil, respectively. Serum thiobarbituric acid reactive substances (TBARS), lipid profile and homocysteine levels were measured prior to ovariectomy and at the end of four months. Ovariectomized rats treated with repeatedly heated soy oil showed significant increases in lipid peroxidation and low-density lipoprotein (LDL) levels. Treatment with once-heated or repeatedly heated soy oil caused a significant increase in total cholesterol, while fresh soy oil caused significant reduction in homocysteine level as compared to other groups. Repeatedly heated soy oil caused significant increases in TBARS and LDL as compared to fresh oil. The higher level of homocysteine in the ovariectomized rats fed with repeatedly heated oil, as compared to those fed with fresh oil, also suggests the repeatedly heated oil contributes to the development of atherosclerosis. Importantly, the protective effect of the soy oil may be lost once it was being repeatedly heated. In conclusion, the consumption of repeatedly heated oil may predispose to atherosclerosis in estrogen-deficient states.
    Matched MeSH terms: Soybean Oil/chemistry*
  15. Gouk SW, Cheng SF, Mok JS, Ong AS, Chuah CH
    Br J Nutr, 2013 Dec 14;110(11):1987-95.
    PMID: 23756564 DOI: 10.1017/S0007114513001475
    The present study aimed to determine the effect of positional distribution of long-chain SFA in TAG, especially at the sn-1, 3 positions, on fat deposition using the C57BL/6 mouse model. Throughout the 15 weeks of the study, mice were fed with diets fortified with palm olein (POo), chemically interesterified POo (IPOo) and soyabean oil (SOY). Mice receiving the SOY-enriched diet gained significantly higher amounts of subcutaneous fat (P= 0·011) and total fat (P= 0·013) compared with the POo group, despite similar body mass gain being recorded. During normalisation with food consumption to obtain the fat:feed ratio, mice fed with the POo-enriched diet exhibited significantly lower visceral (P= 0·044), subcutaneous (P= 0·006) and total (P= 0·003) fat:feed than those fed with the SOY-enriched diet. It is noteworthy that mice fed with the IPOo-enriched diet gained 14·3 % more fat per food consumed when compared with the POo group (P= 0·013), despite their identical total fatty acid compositions. This was mainly attributed to the higher content of long-chain SFA at the sn-1, 3 positions of TAG in POo, which results in delayed absorption after deacylation as evidenced by the higher amounts of long-chain SFA excreted in the faeces of mice fed with the POo-enriched diet. Negative correlations were found between the subcutaneous, visceral as well as total fat accretion per food consumption and the total SFA content at the sn-1, 3 positions, while no relationships were found for MUFA and PUFA. The present results show that the positional distribution of long-chain SFA exerts a more profound effect on body fat accretion than the total SFA content.
    Matched MeSH terms: Soybean Oil/chemistry
  16. Leong XF, Mustafa MR, Das S, Jaarin K
    Lipids Health Dis, 2010;9:66.
    PMID: 20573259 DOI: 10.1186/1476-511X-9-66
    Poor control of blood pressure leads to hypertension which is a major risk factor for development of cardiovascular disease. The present study aimed to explore possible mechanisms of elevation in blood pressure following consumption of heated vegetable oil.
    Matched MeSH terms: Soybean Oil/chemistry*
  17. Yap SP, Yuen KH
    Int J Pharm, 2004 Aug 20;281(1-2):67-78.
    PMID: 15288344
    A single dose comparative bioavailability study was conducted to evaluate the bioavailability of tocotrienols from two self-emulsifying formulations, one of which produced an emulsion that readily lipolysed under in vitro condition (SES-A), while the other produced a finer dispersion with negligible lipolysis (SES-B) in comparison with that of a non-self-emulsifying formulation in soya oil. The study was conducted according to a three-way crossover design using six healthy human volunteers. Statistically significant differences were observed between the logarithmic transformed peak plasma concentration (Cmax) and total area under the plasma concentration-time curve (AUC(0-infinity)) values of both SES-A and -B compared to NSES-C indicating that SES-A and -B achieved a higher extent of absorption compared to NSES-C. Moreover, the 90% confidence interval of the AUC(0-infinity) values of both SES-A and -B over those of NSES-C were between 2-3 suggesting an increase in bioavailability of about two-three times compared to NSES-C. Both SES-A and -B also achieved a faster onset of absorption. However, both SES-A and -B had comparable bioavailability, despite the fact that SES-B was able to form emulsions with smaller droplet size. Thus, it appeared that both droplet sizes as well as the rate and extent of lipolysis of the emulsion products formed were important for enhancing the bioavailability of the tocotrienols from the self-emulsifying systems.
    Matched MeSH terms: Soybean Oil/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links