PURPOSE: Minimum clinical standards for assessment and management of osteoporosis are needed in the Asia-Pacific (AP) region to inform clinical practice guidelines (CPGs) and to improve osteoporosis care. We present the framework of these clinical standards and describe its development.
METHODS: We conducted a structured comparative analysis of existing CPGs in the AP region using a "5IQ" model (identification, investigation, information, intervention, integration, and quality). One-hundred data elements were extracted from each guideline. We then employed a four-round Delphi consensus process to structure the framework, identify key components of guidance, and develop clinical care standards.
RESULTS: Eighteen guidelines were included. The 5IQ analysis demonstrated marked heterogeneity, notably in guidance on risk factors, the use of biochemical markers, self-care information for patients, indications for osteoporosis treatment, use of fracture risk assessment tools, and protocols for monitoring treatment. There was minimal guidance on long-term management plans or on strategies and systems for clinical quality improvement. Twenty-nine APCO members participated in the Delphi process, resulting in consensus on 16 clinical standards, with levels of attainment defined for those on identification and investigation of fragility fractures, vertebral fracture assessment, and inclusion of quality metrics in guidelines.
CONCLUSION: The 5IQ analysis confirmed previous anecdotal observations of marked heterogeneity of osteoporosis clinical guidelines in the AP region. The Framework provides practical, clear, and feasible recommendations for osteoporosis care and can be adapted for use in other such vastly diverse regions. Implementation of the standards is expected to significantly lessen the global burden of osteoporosis.
METHODS: All surgeries were performed by minimally invasive technique with either percutaneous monoaxial or percutaneous polyaxial screws inserted at adjacent fracture levels perpendicular to both superior end plates. Fracture reduction is achieved with adequate rod contouring and distraction maneuver. Radiological parameters were measured during preoperation, postoperation, and follow-up.
RESULTS: A total of 21 patients were included. Eleven patients were performed with monoaxial pedicle screws and 10 patients performed with polyaxial pedicle screws. Based on AO thoracolumbar classification system, 10 patients in the monoaxial group had A3 fracture type and 1 had A4. In the polyaxial group, six patients had A3 and four patients had A4. Total correction of anterior vertebral height (AVH) ratio was 0.30 ± 0.10 and 0.08 ± 0.07 in monoaxial and polyaxial groups, respectively (p < 0.001). Total correction of posterior vertebral height (PVH) ratio was 0.11 ± 0.05 and 0.02 ± 0.02 in monoaxial and polyaxial groups, respectively (p < 0.001). Monoaxial group achieved more correction of 13° (62.6%) in local kyphotic angle compared to 8.2° (48.0%) in polyaxial group. Similarly, in regional kyphotic angle, 16.5° (103.1%) in the monoaxial group and 8.1° (76.4%) in the polyaxial group were achieved.
CONCLUSIONS: Monoaxial percutaneous pedicle screws inserted at adjacent fracture levels provided significantly better fracture reduction compared to polyaxial screws in thoracolumbar fractures.