METHODS: Rats were pre-treated orally with 2% Tween 80 (vehicle), 100 mg/kg ranitidine (reference drug) or MMMC (ratios of 1:1, 1:3 and 3:1 (v/v); doses of 15, 150 or 300 mg/kg) and then subjected to the ethanol-induced gastric ulcer or pyloric ligation assays. Stomach of rats from the former assay was collected and subjected to the macroscopic and microscopic observations, and enzymatic and non-enzymatic antioxidant studies while the gastric juice content and tissue from the latter assay were subjected to the antisecretory activity study. The UHPLC analysis of MMMC was also performed.
RESULT: MMMC, in the ratio 1:1, demonstrated the most effective (P ulcer area formation. These macroscopic findings were supported by the microscopic observations. Except for pH and total acidity, MMMC also significantly (P
METHODS: 2, 2'-[1, 2-cyclohexanediylbis (nitriloethylidyne)]bis(4-bromophenol) (CNBP) is synthesized via a Schiff base reaction, using the related ketone and diamine as the starting materials. SD rats are divided as normal, ulcer control (5 ml/kg of 10% Tween 20), testing (10 and 20 mg/kg of CNBP) and reference groups (omeprazole 20 mg/kg). Except for the normal group, the rest of the groups are induced gastric ulcer by ethanol 1 h after the pre-treatment. Ulcer area, gastric wall mucus, and acidity of gastric content of the animal stomachs are measured after euthanization. Antioxidant activity of the compound is tested by Ferric reducing antioxidant power (FRAP) test and safety of the compound is identified through acute toxicity by [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Moreover, activities of superoxide dismutase (SOD), catalase (CAT), levels of prostaglandins E2 (PGE2) and also malondialdehyde (MDA) are determined.
RESULTS: Antioxidant activity of CNBP was approved via FRAP assay. Vast shallow hemorrhagic injury of gastric glandular mucosa was observed in the ulcer group compared to the CNBP-treated animals. Histological evaluations confirmed stomach epithelial defense effect of CNBP with drastic decrease of gastric ulceration, edema and leucocytes penetration of submucosal stratum. Immunostaining exhibited over-expression in HSP70 protein in CNBP-treated groups compared to that of the ulcer group. Also, gastric protein analysis showed low levels of MDA, PGE2 and high activity of SOD and CAT.
CONCLUSIONS: CNBP with noticeable antioxidant property showed gastroprotective activity in the testing rodents via alteration of HSP70 protein expression. Also, antioxidant enzyme activities which were changed after treatment with CNBP in the animals could be elucidated as its gastroprotective properties.
MATERIALS AND METHODS: BM was isolated from C. arborescens. Gastric acid output, ulcer index, gross evaluation, mucus production, histological evaluation using hematoxylin and eosin and periodic acid-Schiff staining and immunohistochemical localization for heat shock protein 70 (HSP70) and Bax proteins were investigated. Possible involvement of reduced glutathione, lipid peroxidation, prostaglandin E2, antioxidant enzymes, superoxide dismutase and catalase enzymes, radical scavenging, nonprotein sulfhydryl compounds, and anti-Helicobacter pylori were investigated.
RESULTS: BM showed antisecretory activity against the pylorus ligature model. The pretreatment with BM protect gastric mucosa from ethanol damaging effect as seen by the improved gross and histological appearance. BM significantly reduced the ulcer area formation, the submucosal edema, and the leukocytes infiltration compared to the ulcer control. The compound showed intense periodic acid-Schiff staining to the gastric mucus layer and marked amount of alcian blue binding to free gastric mucus. BM significantly increased the gastric homogenate content of prostaglandin E2 glutathione, superoxide dismutase, catalase, and nonprotein sulfhydryl compounds. The compound inhibited the lipid peroxidation revealed by the reduced gastric content of malondialdehyde. Moreover, BM upregulate HSP70 expression and downregulate Bax expression. Furthermore, the compound showed interesting anti-H. pylori activity.
CONCLUSION: Thus, it could be concluded that BM possesses gastroprotective activity, which could be attributed to the antisecretory, mucus production, antioxidant, HSP70, antiapoptotic, and anti-H. pylori mechanisms.