Displaying all 14 publications

Abstract:
Sort:
  1. Tan YY, Abdullah D, Abu Kasim NH, Yazid F, Mahamad Apandi NI, Ramanathan A, et al.
    Tissue Cell, 2024 Oct;90:102484.
    PMID: 39068688 DOI: 10.1016/j.tice.2024.102484
    Regenerative endodontics aims to restore pulp tissues, thus preserving the vitality of the tooth. One promising approach involves the utilization of decellularized human dental pulp (DHDP) as a scaffold repopulated with Wharton's Jelly mesenchymal stem cells (WJMSCs). This study aimed to regenerate pulp tissues using DHDP and WJMSCs following pulpectomy in mature canine teeth of a feline animal model and to investigate the histological features of the regenerated pulp. A 12-month-old male domestic shorthaired felines were used as subjects. Teeth were categorized into untreated (Group 1), pulpectomy with mineral trioxide aggregate (MTA) (Group 2), and pulpectomy with DHDP-repopulated scaffold and MTA (Group 3). The animals were sacrificed six weeks post-intervention. H&E and immunohistochemistry using anti-collagen type 1 and laminin antibodies were used to stain the tissue sections. Histological examinations presented pulp-like tissues in Group 3, with tissue components similar to the structures found in Group 1. Immunohistochemical analysis demonstrated the presence of collagen type I and laminin within the regenerated tissues. The root canals of teeth in Group 2 were devoid of pulpal tissue. DHDP with WJMSCs can potentially be used for pulp regeneration, supporting the modality for developing new clinical protocols in stem cell therapy.
    Matched MeSH terms: Wharton Jelly/cytology
  2. Choo KB, Tai L, Hymavathee KS, Wong CY, Nguyen PN, Huang CJ, et al.
    Int J Med Sci, 2014;11(11):1201-7.
    PMID: 25249788 DOI: 10.7150/ijms.8356
    On in vitro expansion for therapeutic purposes, the regenerative potentials of mesenchymal stem cells (MSCs) decline and rapidly enter pre-mature senescence probably involving oxidative stress. To develop strategies to prevent or slow down the decline of regenerative potentials in MSC culture, it is important to first address damages caused by oxidative stress-induced premature senescence (OSIPS). However, most existing OSIPS study models involve either long-term culture to achieve growth arrest or immediate growth arrest post oxidative agent treatment and are unsuitable for post-induction studies.
    Matched MeSH terms: Wharton Jelly/cytology*
  3. Abu Kasim NH, Govindasamy V, Gnanasegaran N, Musa S, Pradeep PJ, Srijaya TC, et al.
    J Tissue Eng Regen Med, 2015 Dec;9(12):E252-66.
    PMID: 23229816 DOI: 10.1002/term.1663
    The discovery of mesenchymal stem cells (MSCs) from a myriad of tissues has triggered the initiative of establishing tailor-made stem cells for disease-specific therapy. Nevertheless, lack of understanding on the inherent differential propensities of these cells may restrict their clinical outcome. Therefore, a comprehensive study was done to compare the proliferation, differentiation, expression of cell surface markers and gene profiling of stem cells isolated from different sources, viz. bone marrow, Wharton's jelly, adipose tissue and dental pulp. We found that although all MSCs were phenotypically similar to each other, Wharton's jelly (WJ) MSCs and dental pulp stem cells (DPSCs) were highly proliferative as compared to bone marrow (BM) MSCs and adipose tissue (AD) MSCs. Moreover, indistinguishable cell surface characteristics and differentiation capacity were confirmed to be similar among all cell types. Based on gene expression profiling, we postulate that BM-MSCs constitutively expressed genes related to inflammation and immunodulation, whereas genes implicated in tissue development were highly expressed in AD-MSCs. Furthermore, the transcriptome profiling of WJ-MSCs and DPSCs revealed an inherent bias towards the neuro-ectoderm lineage. Based on our findings, we believe that there is no unique master mesenchymal stem cell that is appropriate to treat all target diseases. More precisely, MSCs from different sources exhibit distinct and unique gene expression signatures that make them competent to give rise to specific lineages rather than others. Therefore, stem cells should be subjected to rigorous characterization and utmost vigilance needs to be adopted in order to choose the best cellular source for a particular disease.
    Matched MeSH terms: Wharton Jelly/cytology
  4. Ding SLS, Koh AE, Kumar S, Ali Khan MS, Alzahrani B, Mok PL
    PMID: 31060031 DOI: 10.1016/j.jphotobiol.2019.04.008
    Dysfunctional or death of retinal photoreceptors is an irreversible phenomenon that is closely associated with a broad range of retinal degenerative diseases, such as retinitis pigmentosa and age-related macular degeneration (AMD), resulting in successive loss of visual function and blindness. In search for viable treatment for retinal degenerative diseases, mesenchymal stem cells (MSCs) has demonstrated promising therapeutic capabilities to repair and replace damaged photoreceptor cells in both in vitro and in vivo conditions. Nevertheless, the dearth of MSC differentiation capacity into photoreceptors has limited its use in cell replacement therapy. Erythropoietin (EPO) has vital role in early neural retinal cell differentiation and demonstrated rescue potential on dying photoreceptor cells. Hence, we aimed to evaluate the differentiation capacity of MSCs into photoreceptor cells in the presence of human EPO protein. We derived the MSC from human Wharton's jelly of umbilical cord and transduced the cells with lentivirus particles encoding EPO and green fluorescent protein (GFP) as reporter gene. The transduced cells were selectively cultured and induced to differentiate into photoreceptors by exposing to photoreceptor differentiation cocktail. Our preliminary results showed that transduced cells exposed to induction medium had an enhanced differentiation capacity when compared to non-transduced cells. Our results demonstrated a novel strategy to increase the yield of in vitro photoreceptor differentiation and may be potentially useful in improving the efficiency of stem cell transplantation for ocular disorders.
    Matched MeSH terms: Wharton Jelly/cytology
  5. Lau SX, Leong YY, Ng WH, Ng AWP, Ismail IS, Yusoff NM, et al.
    Cell Biol Int, 2017 Jun;41(6):697-704.
    PMID: 28403524 DOI: 10.1002/cbin.10774
    Studies showed that co-transplantation of mesenchymal stem cells (MSCs) and cord blood-derived CD34+hematopoietic stem cells (HSCs) offered greater therapeutic effects but little is known regarding the effects of human Wharton's jelly derived MSCs on HSC expansion and red blood cell (RBC) generation in vitro. This study aimed to investigate the effects of MSCs on HSC expansion and differentiation. HSCs were co-cultured with MSCs or with 10% MSCs-derived conditioned medium, with HSCs cultured under standard medium served as a control. Cell expansion rates, number of mononuclear cell post-expansion and number of enucleated cells post-differentiation were evaluated. HSCs showed superior proliferation in the presence of MSC with mean expansion rate of 3.5 × 108 ± 1.8 × 107after day 7 compared to the conditioned medium and the control group (8.9 × 107 ± 1.1 × 108and 7.0 × 107 ± 3.3 × 106respectively, P 
    Matched MeSH terms: Wharton Jelly/cytology
  6. Ng WH, Yong YK, Ramasamy R, Ngalim SH, Lim V, Shaharuddin B, et al.
    Int J Mol Sci, 2019 Nov 06;20(22).
    PMID: 31698679 DOI: 10.3390/ijms20225519
    Cardiac c-kit cells show promise in regenerating an injured heart. While heart disease commonly affects elderly patients, it is unclear if autologous cardiac c-kit cells are functionally competent and applicable to these patients. This study characterised cardiac c-kit cells (CCs) from aged mice and studied the effects of human Wharton's Jelly-derived mesenchymal stem cells (MSCs) on the growth kinetics and cardiac differentiation of aged CCs in vitro. CCs were isolated from 4-week- and 18-month-old C57/BL6N mice and were directly co-cultured with MSCs or separated by transwell insert. Clonogenically expanded aged CCs showed comparable telomere length to young CCs. However, these cells showed lower Gata4, Nkx2.5, and Sox2 gene expressions, with changes of 2.4, 3767.0, and 4.9 folds, respectively. Direct co-culture of both cells increased aged CC migration, which repopulated 54.6 ± 4.4% of the gap area as compared to aged CCs with MSCs in transwell (42.9 ± 2.6%) and CCs without MSCs (44.7 ± 2.5%). Both direct and transwell co-culture improved proliferation in aged CCs by 15.0% and 16.4%, respectively, as traced using carboxyfluorescein succinimidyl ester (CFSE) for three days. These data suggest that MSCs can improve the growth kinetics of aged CCs. CCs retaining intact telomere are present in old hearts and could be obtained based on their self-renewing capability. Although these aged CCs with reduced growth kinetics are improved by MSCs via cell-cell contact, the effect is minimal.
    Matched MeSH terms: Wharton Jelly/cytology*
  7. Leow SN, Luu CD, Hairul Nizam MH, Mok PL, Ruhaslizan R, Wong HS, et al.
    PLoS One, 2015;10(6):e0128973.
    PMID: 26107378 DOI: 10.1371/journal.pone.0128973
    To investigate the safety and efficacy of subretinal injection of human Wharton's Jelly-derived mesenchymal stem cells (hWJ-MSCs) on retinal structure and function in Royal College of Surgeons (RCS) rats.
    Matched MeSH terms: Wharton Jelly/cytology
  8. Liau LL, Ruszymah BHI, Ng MH, Law JX
    Curr Res Transl Med, 2020 01;68(1):5-16.
    PMID: 31543433 DOI: 10.1016/j.retram.2019.09.001
    Mesenchymal stromal cells (MSCs) are widely used in the clinic because they involve fewer ethical issues and safety concerns compared to other stem cells such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). MSCs derived from umbilical cord Wharton's jelly (WJ-MSCs) have excellent proliferative potential and a faster growth rate and can retain their multipotency for more passages in vitro compared to adult MSCs from bone marrow or adipose tissue. WJ-MSCs are used clinically for repairing tissue injuries of the spinal cord, liver and heart with the aim of regenerating tissue. On the other hand, WJ-MSCs are also used clinically to ameliorate immune-mediated diseases based on their ability to modulate immune responses. In the field of tissue engineering, WJ-MSCs capable of differentiating into multiple cell lineages have been used to produce a variety of engineered tissues in vitro that can then be transplanted in vivo. This review discusses the characteristics of WJ-MSCs, the differences between WJ-MSCs and adult MSCs, clinical studies involving WJ-MSCs and future perspectives of WJ-MSC research and clinical applications. To summarize, WJ-MSCs have shown promise in treating a variety of diseases clinically. However, most clinical trials/studies reported thus far are relatively smaller in scale. The collected evidence is insufficient to support the routine use of WJ-MSC therapy in the clinic. Thus, rigorous clinical trials are needed in the future to obtain more information on WJ-MSC therapy safety and efficacy.
    Matched MeSH terms: Wharton Jelly/cytology*
  9. Lim J, Razi ZR, Law J, Nawi AM, Idrus RB, Ng MH
    Cytotherapy, 2016 12;18(12):1493-1502.
    PMID: 27727016 DOI: 10.1016/j.jcyt.2016.08.003
    BACKGROUND AIMS: Human Wharton's jelly-derived mesenchymal stromal cells (hWJMSCs) are possibly the most suitable allogeneic cell source for stromal cell therapy and tissue engineering applications because of their hypo-immunogenic and non-tumorigenic properties, easy availability and minimal ethical concerns. Furthermore, hWJMSCs possess unique properties of both adult mesenchymal stromal cells and embryonic stromal cells. The human umbilical cord (UC) is approximately 50-60 cm long and the existing studies in the literature have not provided information on which segment of the UC was studied. In this study, hWJMSCs derived from three anatomical segments of the UC are compared.

    METHODS: Three segments of the whole UC, each 3 cm in length, were identified anatomically as the maternal, middle and fetal segments. The hWJMSCs from the different segments were analyzed via trypan blue exclusion assay to determine the growth kinetics and cell viability, flow cytometry for immunophenotyping and immunofluorescence and reverse transcriptase polymerase chain reaction (RT-PCR) for expression of stromal cell transcriptional factors. Furthermore, the trilineage differentiation potential (osteogenic, adipogenic and chondrogenic) of these cells was also assessed.

    RESULTS: hWJMSCs isolated from the maternal and fetal segments displayed greater viability and possessed a significantly higher proliferation rate compared with cells from the middle segment. Immunophenotyping revealed that hWJMSCs derived from all three segments expressed the MSC markers CD105, CD73, CD90, CD44, CD13 and CD29, as well as HLA-ABC and HLA-DR, but were negative for hematopoietic markers CD14, CD34 and CD45. Analysis of the embryonic markers showed that all three segments expressed Nanog and Oct 3/4, but only the maternal and fetal segments expressed SSEA 4 and TRA-160. Cells from all three segments were able to differentiate into chondrogenic, osteogenic and adipogenic lineages with the middle segments showing much lower differentiation potential compared with the other two segments.

    CONCLUSIONS: hWJMSCs derived from the maternal and fetal segments of the UC are a good source of MSCs compared with cells from the middle segment because of their higher proliferation rate and viability. Fetal and maternal segments are the preferred cell source for bone regeneration.

    Matched MeSH terms: Wharton Jelly/cytology*
  10. Rengasamy M, Singh G, Fakharuzi NA, Siddikuzzaman, Balasubramanian S, Swamynathan P, et al.
    Stem Cell Res Ther, 2017 06 13;8(1):143.
    PMID: 28610623 DOI: 10.1186/s13287-017-0595-1
    BACKGROUND: Mesenchymal stromal cells (MSCs) from various tissues have shown moderate therapeutic efficacy in reversing liver fibrosis in preclinical models. Here, we compared the relative therapeutic potential of pooled, adult human bone marrow (BM)- and neonatal Wharton's jelly (WJ)-derived MSCs to treat CCl4-induced liver fibrosis in rats.

    METHODS: Sprague-Dawley rats were injected with CCl4 for 8 weeks to induce irreversible liver fibrosis. Ex-vivo expanded, pooled human MSCs obtained from BM and WJ were intravenously administered into rats with liver fibrosis at a dose of 10 × 106 cells/animal. Sham control and vehicle-treated animals served as negative and disease controls, respectively. The animals were sacrificed at 30 and 70 days after cell transplantation and hepatic-hydroxyproline content, histopathological, and immunohistochemical analyses were performed.

    RESULTS: BM-MSCs treatment showed a marked reduction in liver fibrosis as determined by Masson's trichrome and Sirius red staining as compared to those treated with the vehicle. Furthermore, hepatic-hydroxyproline content and percentage collagen proportionate area were found to be significantly lower in the BM-MSCs-treated group. In contrast, WJ-MSCs treatment showed less reduction of fibrosis at both time points. Immunohistochemical analysis of BM-MSCs-treated liver samples showed a reduction in α-SMA+ myofibroblasts and increased number of EpCAM+ hepatic progenitor cells, along with Ki-67+ and human matrix metalloprotease-1+ (MMP-1+) cells as compared to WJ-MSCs-treated rat livers.

    CONCLUSIONS: Our findings suggest that BM-MSCs are more effective than WJ-MSCs in treating liver fibrosis in a CCl4-induced model in rats. The superior therapeutic activity of BM-MSCs may be attributed to their expression of certain MMPs and angiogenic factors.

    Matched MeSH terms: Wharton Jelly/cytology
  11. Siow KS, Abdul Rahman AS, Ng PY, Majlis BY
    Mater Sci Eng C Mater Biol Appl, 2020 Feb;107:110225.
    PMID: 31761201 DOI: 10.1016/j.msec.2019.110225
    Role of sulfur (S) and nitrogen (N) groups in promoting cell adhesion or commonly known as biocompatibility, is well established, but their role in reducing bacterial attachment and growth is less explored or not well-understood. Natural sulfur-based compounds, i.e. sulfide, sulfoxide and sulfinic groups, have shown to inhibit bacterial adhesion and biofilm formation. Hence, we mimicked these surfaces by plasma polymerizing thiophene (ppT) and air-plasma treating this ppT to achieve coatings with S of similar oxidation states as natural compounds (ppT-air). In addition, the effects of these N and S groups from ppT-air were also compared with the biocompatible amine-amide from n-heptylamine plasma polymer. Crystal violet assay and live and dead fluorescence staining of E. coli and S. aureus showed that all the N and S coated surfaces generated, including ppHA, ppT and ppT-air, produced similarly potent, growth reduction of both bacteria by approximately 65% at 72 h compared to untreated glass control. The ability of osteogenic differentiation in Wharton's jelly mesenchymal stem cells (WJ-MSCs) were also used to test the cell biocompatibility of these surfaces. Alkaline phosphatase assay and scanning electron microscopy imaging of these WJ-MSCs growths indicated that ppHA, and ppT-air were cell-friendly surfaces, with ppHA showing the highest osteogenic activity. In summary, the N and S containing surfaces could reduce bacteria growth while promoting mammalian cell growth, thus serve as potential candidate surfaces to be explored further for biomaterial applications.
    Matched MeSH terms: Wharton Jelly/cytology
  12. Ebrahimi S, Hanim YU, Sipaut CS, Jan NBA, Arshad SE, How SE
    Int J Mol Sci, 2021 Sep 06;22(17).
    PMID: 34502544 DOI: 10.3390/ijms22179637
    Recently, composite scaffolding has found many applications in hard tissue engineering due to a number of desirable features. In this present study, hydroxyapatite/bioglass (HAp/BG) nanocomposite scaffolds were prepared in different ratios using a hydrothermal approach. The aim of this research was to evaluate the adhesion, growth, viability, and osteoblast differentiation behavior of human Wharton's-jelly-derived mesenchymal stem cells (hWJMSCs) on HAp/BG in vitro as a scaffold for application in bone tissue engineering. Particle size and morphology were investigated by TEM and bioactivity was assessed and proven using SEM analysis with hWJMSCs in contact with the HAp/BG nanocomposite. Viability was evaluated using PrestoBlueTM assay and early osteoblast differentiation and mineralization behaviors were investigated by ALP activity and EDX analysis simultaneously. TEM results showed that the prepared HAp/BG nanocomposite had dimensions of less than 40 nm. The morphology of hWJMSCs showed a fibroblast-like shape, with a clear filopodia structure. The viability of hWJMSCs was highest for the HAp/BG nanocomposite with a 70:30 ratio of HAp to BG (HAp70/BG30). The in vitro biological results confirmed that HAp/BG composite was not cytotoxic. It was also observed that the biological performance of HAp70/BG30 was higher than HAp scaffold alone. In summary, HAp/BG scaffold combined with mesenchymal stem cells showed significant potential for bone repair applications in tissue engineering.
    Matched MeSH terms: Wharton Jelly/cytology*
  13. Aung SW, Abu Kasim NH, Ramasamy TS
    Methods Mol Biol, 2019;2045:323-335.
    PMID: 31201682 DOI: 10.1007/7651_2019_242
    The therapeutic potential of human mesenchymal stromal stem cells (hMSCs) for cell-based therapeutic is greatly influenced by the in vitro culture condition including the culture conditions. Nevertheless, there are many technical challenges needed to be overcome prior to the clinical use including the quantity, quality, and heterogeneity of the cells. Therefore, it is necessary to develop a stem cell culture procedure or protocol for cell expansion in order to generate reproducible and high-quality cells in accordance with good manufacturing practice for clinical and therapeutic purposes. Here we assessed the MSCs characteristic of human Wharton's jelly mesenchymal stromal cells in in vitro culture according to the criteria established by the International Society for Cellular Therapy. Besides, the viability of the WJMSCs was determined in order to increase the confidence that the cells are employed to meet the therapeutic efficacy.
    Matched MeSH terms: Wharton Jelly/cytology*
  14. Salehinejad P, Alitheen NB, Ali AM, Omar AR, Mohit M, Janzamin E, et al.
    In Vitro Cell Dev Biol Anim, 2012 Feb;48(2):75-83.
    PMID: 22274909 DOI: 10.1007/s11626-011-9480-x
    Several techniques have been devised for the dissociation of tissues for primary culture. These techniques can affect the quantity and quality of the isolated cells. The aim of our study was to develop the most appropriate method for the isolation of human umbilical cord-derived mesenchymal (hUCM) cells. In the present study, we compared four methods for the isolation of hUCM cells: three enzymatic methods; collagenase/hyaluronidase/trypsin (CHT), collagenase/trypsin (CT) and trypsin (Trp), and an explant culture (Exp) method. The trypan blue dye exclusion test, the water-soluble tetrazolium salt-1 (WST-1) assay, flow cytometry, alkaline phosphatase activity and histochemical staining were used to evaluate the results of the different methods. The hUCM cells were successfully isolated by all methods but the isolation method used profoundly altered the cell number and proliferation capacity of the isolated cells. The cells were successfully differentiated into adipogenic and osteogenic lineages and alkaline phosphatase activity was detected in the hUCM cell colonies of all groups. Flow cytometry analysis revealed that CD44, CD73, CD90 and CD105 were expressed in all groups, while CD34 and CD45 were not expressed. The expression of C-kit in the enzymatic groups was higher than in the explant group, while the expression of Oct-4 was higher in the CT group compared to the other groups. We concluded that the collagenase/trypsin method of cell isolation yields a higher cell density than the others. These cells expressed a higher rate of pluripotent cell markers such as C-kit and Oct-4, while the explant method of cell isolation resulted in a higher cell proliferation rate and activity compared to the other methods.
    Matched MeSH terms: Wharton Jelly/cytology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links