OBJECTIVE: This Cochrane Review aimed to determine the effects of alternating pressure (active) air beds, overlays or mattresses compared with any support surface in preventing pressure ulcers.
METHODS: The population addressed was people at risk of and with existing pressure ulcers. Studies comparing alternating pressure (active) air surfaces with any beds, overlays or mattresses were included. The outcomes studied were pressure ulcer incidence, patient support-surface-associated comfort, adverse events, health-related quality of life and cost-effectiveness.
RESULTS: There were 32 studies with a total of 9058 participants. There is low certainty evidence that alternating pressure (active) air surfaces compared with foam surfaces may reduce the incidence of pressure ulcers. It is uncertain whether there is a difference in the proportion of people developing new pressure ulcers between alternating pressure (active) air surfaces and reactive water-filled, fibre, air, gel or standard hospital surfaces.
CONCLUSION: The use of alternating pressure (active) air surfaces may reduce the incidence of pressure ulcers compared to foam surfaces. However, it is uncertain if it is superior to reactive air surfaces, water surfaces and fiber surfaces in preventing pressure ulcers.
METHODS: The investigated dataset was obtained via long-term measurements in retirement homes and intensive care units (ICU). Data were measured unobtrusively using a measuring pad equipped with piezoceramic sensors. The proposed approach focused on the processing methods of the measured ballistocardiographic signals, Cartan curvature (CC), and Euclidean arc length (EAL).
RESULTS: For analysis, 218,979 normal and 216,259 aberrant 2-second samples were collected and classified using a convolutional neural network. Experiments using cross-validation with expert threshold and data length revealed the accuracy, sensitivity, and specificity of the proposed method to be 86.51 CONCLUSIONS: The proposed method provides a unique approach for an early detection of health concerns in an unobtrusive manner. In addition, the suitability of EAL over the CC was determined.
OBJECTIVES: We aimed to assess the effectiveness of co-bedding compared with separate (individual) care for stable preterm twins in the neonatal nursery in promoting growth and neurodevelopment and reducing short- and long-term morbidities, and to determine whether co-bedding is associated with significant adverse effects.As secondary objectives, we sought to evaluate effects of co-bedding via the following subgroup analyses: twin pairs with different weight ranges (very low birth weight [VLBW] < 1500 grams vs non-VLBW), twins with versus without significant growth discordance at birth, preterm versus borderline preterm twins, twins co-bedded in incubator versus cot at study entry, and twins randomized by twin pair versus neonatal unit.
SEARCH METHODS: We used the standard search strategy of the Cochrane Neonatal Review Group (CNRG). We used keywords and medical subject headings (MeSH) to search the Cochrane Central Register of Controlled Trials (CENTRAL; 2016, Issue 2), MEDLINE (via PubMed), EMBASE (hosted by EBSCOHOST), the Cumulative Index to Nursing and Allied Health Literature (CINAHL), and references cited in our short-listed articles, up to February 29, 2016.
SELECTION CRITERIA: We included randomized controlled trials with randomization by twin pair and/or by neonatal unit. We excluded cross-over studies.
DATA COLLECTION AND ANALYSIS: We extracted data using standard methods of the CNRG. Two review authors independently assessed the relevance and risk of bias of retrieved records. We contacted the authors of included studies to request important information missing from their published papers. We expressed our results using risk ratios (RRs) and mean differences (MDs) when appropriate, along with 95% confidence intervals (95% CIs). We adjusted the unit of analysis from individual infants to twin pairs by averaging measurements for each twin pair (continuous outcomes) or by counting outcomes as positive if developed by either twin (dichotomous outcomes).
MAIN RESULTS: Six studies met the inclusion criteria; however, only five studies provided data for analysis. Four of the six included studies were small and had significant limitations in design. As each study reported outcomes differently, data for most outcomes were effectively contributed by a single study. Study authors reported no differences between co-bedded twins and twins receiving separate care in terms of rate of weight gain (MD 0.20 grams/kg/d, 95% CI -1.60 to 2.00; one study; 18 pairs of twins; evidence of low quality); apnea, bradycardia, and desaturation (A/B/D) episodes (RR 0.85, 95% CI 0.18 to 4.05; one study; 62 pairs of twins; evidence of low quality); episodes in co-regulated states (MD 0.96, 95% CI -3.44 to 5.36; one study; three pairs of twins; evidence of very low quality); suspected or proven infection (RR 0.84, 95% CI 0.30 to 2.31; three studies; 65 pairs of twins; evidence of very low quality); length of hospital stay (MD -4.90 days, 95% CI -35.23 to 25.43; one study; three pairs of twins; evidence of very low quality); and parental satisfaction measured on a scale of 0 to 55 (MD -0.38, 95% CI -4.49 to 3.73; one study; nine pairs of twins; evidence of moderate quality). Although co-bedded twins appeared to have lower pain scores 30 seconds after heel lance on a scale of 0 to 21 (MD -0.96, 95% CI -1.68 to -0.23; two studies; 117 pairs of twins; I(2) = 75%; evidence of low quality), they had higher pain scores 90 seconds after the procedure (MD 1.00, 95% CI 0.14 to 1.86; one study; 62 pairs of twins). Substantial heterogeneity in the outcome of infant pain response after heel prick at 30 seconds post procedure and conflicting results at 30 and 90 seconds post procedure precluded clear conclusions.
AUTHORS' CONCLUSIONS: Evidence on the benefits and harms of co-bedding for stable preterm twins was insufficient to permit recommendations for practice. Future studies must be adequately powered to detect clinically important differences in growth and neurodevelopment. Researchers should assess harms such as infection, along with medication errors and caregiver satisfaction.
METHODS: This was a quasi-experimental study conducted in a tertiary referral hospital. Healthy post-delivery Malaysian mothers were randomly selected and enrolled into the control or the intervention group. On the day of discharge, mothers in the intervention group were interviewed face-to-face in the post-natal ward on their plans for sleeping arrangement with their newborn. After the interview, mothers were advised not to bed share with their newborn and were given an educational leaflet on safe sleeping practices. One week after discharge, mothers in both groups were interviewed over the telephone regarding their actual sleeping arrangements with their newborn using the same questionnaire. Logistic regression was performed to determine factors associated with reduced bed sharing.
RESULTS: A total of 94 mothers and 95 mothers were recruited to the control and intervention group, respectively. The baseline bed-sharing prevalence was similar between groups: 60.6% in the control group and 61.1% in the interventional group. The proportion of mothers who bed shared with their newborn reduced from 61.1 to 37.9% after the intervention (P