This study compared the enzymatic activity of clinical isolates of Cryptococcus neoformans, Cryptococcus gattii, environmental isolates of C. neoformans and non-neoformans Cryptococcus. Most of the cryptococcal isolates investigated in this study exhibited proteinase and phospholipase activities. Laccase activity was detected from all the C. neoformans and C. gattii isolates, but not from the non-neoformans Cryptococcus isolates. There was no significant difference in the proteinase, phospholipase and laccase activities of C. neoformans and C. gattii. However, significant difference in the enzymatic activities of beta-glucuronidase, alpha-glucosidase, beta-glucosidase and N-acetyl-beta-glucosaminidase between C. neoformans and C. gattii isolates was observed in this study. Environmental isolates of C. neoformans exhibited similar enzymatic profiles as the clinical isolates of C. neoformans, except for lower proteinase and laccase activities.
Thirty six clinical isolates of Cryptococcus neoformans were tested for their susceptibility to 5-fluorocytosine and amphotericin B by the determination of minimum inhibitory concentrations and minimum fungicidal concentrations. 22.2% of the isolates were resistant to 5-fluorocytosine and 36.1% indicated 5-fluorocytosine tolerance. All strains were sensitive to amphotericin B.
The in vitro susceptibilities of Malaysian clinical isolates of Cryptococcus neoformans var. grubii and C . gattii to five antifungal drugs (amphotericin B, flucytosine, fluconazole, itraconazole and ketoconazole) were determined using the Etest method. None of the Malaysian isolates was resistant to amphotericin B and ketoconazole. Isolates resistant to flucytosine, fluconazole and itraconazole were observed in this study. Minimum inhibition concentrations (MICs) of > or = 32 microg ml(-1) against flucytosine, > or = 64 microg ml(-1) against fluconazole and > or = 1 microg ml(-1) against itraconazole were noted in four (8.3%), two (4.2%) and one (2.1%) isolates respectively. There was no significant difference in the MICs for both Cryptococcus species (P > 0.05), indicating that C. gattii was as susceptible as var. grubii to all the antifungal drugs tested. No significant difference in the MICs for both Cryptococcus species collected from 1980 to 1990 and 2002 to 2004 were observed (P > 0.05).
The infection of Cryptococcus neoformans is acquired through the inhalation of desiccated yeast cells and basidiospores originated from the environment, particularly from bird's droppings and decaying wood. Three environmental strains of C. neoformans originated from bird droppings (H4, S48B and S68B) and C. neoformans reference clinical strain (H99) were used for intranasal infection in C57BL/6 mice. We showed that the H99 strain demonstrated higher virulence compared to H4, S48B and S68B strains. To examine if gene expression contributed to the different degree of virulence among these strains, a genome-wide microarray study was performed to inspect the transcriptomic profiles of all four strains. Our results revealed that out of 7,419 genes (22,257 probes) examined, 65 genes were significantly up-or down-regulated in H99 versus H4, S48B and S68B strains. The up-regulated genes in H99 strain include Hydroxymethylglutaryl-CoA synthase (MVA1), Mitochondrial matrix factor 1 (MMF1), Bud-site-selection protein 8 (BUD8), High affinity glucose transporter 3 (SNF3) and Rho GTPase-activating protein 2 (RGA2). Pathway annotation using DAVID bioinformatics resource showed that metal ion binding and sugar transmembrane transporter activity pathways were highly expressed in the H99 strain. We suggest that the genes and pathways identified may possibly play crucial roles in the fungal pathogenesis.
Cryptococcus neoformans is an opportunistic fungus that causes fatal meningoencephalitis especially in AIDS patients. There is an increasing need for discovery of new anti-cryptococcal drugs due to emergence of resistance cases in recent years. In this study, we aim to elucidate the antifungal effect of triclosan against C. neoformans.
This study describes the isolation of Cryptococcus neoformans and Cryptococcus gattii from patients with chronic meningitis who were admitted to 16 Malaysian hospitals, from 2003 to 2004. Of the 96 cryptococcal cases reported over the 2-year period, 74 (77.1%) patients were male and 45 (46.9%) patients were between 30 and 39 years old. Cryptococcosis was uncommon in children. A total of 57 (59.4%) and 23 (24.0%) patients were Malay and Chinese respectively. Human immunodeficiency virus infection was the major underlying disease reported in 36 (37.5%) patients. C. neoformans var. grubii (serotype A and molecular type VNI) was the predominant Cryptococcus species isolated from 88.5% of cryptococcal cases in this country. Cryptococcal cases due to C. neoformans var. grubii were reported from all the five regions in Malaysia, with the most number of cases reported from the central and northern regions. Cryptococcus gattii (all were serotype B and molecular types VGI/II) was isolated from all regions except the southern region. Compared with a study conducted prior to the AIDS era, our findings show substantial changes in the demographical characteristics of patients.
The molecular types and genetic heterogeneity of Cryptococcus neoformans and C. gattii clinical isolates in Malaysia were determined in this study. Of 44 C. neoformans collected between 1980 and 2003, 42 (95.5%) were molecular type VNI, 2 (4.5%) were molecular type VNII. Of 17 C.gattii isolates, 13 (76.5%) were molecular type VGI, and 4 (23.5%) were molecular type VGII. A difference was noted when comparing the molecular types of cryptococcal isolates in the earlier and recent cases of cryptococcosis. While both molecular types VNI and VGI were equally predominant in the earlier cases of cryptococcosis, VNI was the most predominant molecular type isolated from the recent cases. VNII was a new molecular type, isolated from 5.1% of the recent cases. All the bird dropping isolates were molecular type VNI. The genetic heterogeneity of the two predominant molecular types, i.e., VNI, VGI clinical isolates and bird dropping isolates of C. neoformans were further determined by polymerase chain reaction (PCR) fingerprinting method, using (GTG)5 as single primer. Two clusters of cryptococcal isolates were distinguished at 68.5% of similarity, with cluster I consisting of VNI isolates and cluster II consisting of VGI isolates. Each cluster was further subdivided into three subtypes at >/=80% of similarity. Fourteen bird dropping isolates were grouped into a subtype within VN1, sharing 82.7% of similarity with the clinical isolates. A higher degree of similarities, ranging from 93.4-97.6% was noted between 3 bird dropping isolates with the clinical isolates in another subtype. This study demonstrated the existence of various molecular types of C. neoformans isolates in Malaysia and the genetic heterogeneity within the predominant molecular types. The study also provides evidence for genetic relatedness of clinical isolates with bird dropping isolates in the environment.
An immunocompetent 5 year-old girl presented with pyrexia of unknown origin associated with headache. Initial investigations showed leukocytosis and an increased erythrocyte sedimentation rate. A Widal-Weil Felix test, blood film for malarial parasites, mycoplasma IgM antibody, cultures from blood and urine, full blood picture, Mantoux test, and chest x-ray were all negative. A lumbar puncture was done as part of a work-up for pyrexia of unknown origin. Cryptococcus neoformans was seen on India ink examination and confirmed on culture. She was treated with 10 weeks of intravenous amphotericin B and 8 weeks of fluconazole. Further immunological tests did not reveal any defect in the cell-mediated immune system. C. neoformans meningitis may present with non-specific symptoms and should be considered in a work-up for pyrexia of unknown origin.
Cryptococcosis is a life-threatening mycosis typically seen in immunocompromised patients. Pulmonary cryptococcosis generally presents as multiple or solitary nodular opacities. Cryptococcal infection presenting as a destructing cavernoma (cryptococcoma) without diffuse infiltration of the lung is an extremely rare presentation, even in immunocompromised patients. This report presents a healthy, HIV negative, immunocompetent patient who presented with a large solitary lung mass provisionally diagnosed as a lung malignancy on radiological imaging that proved to be a large cryptococcoma after biopsy. The patient was treated with liposomal Amphotericin B and fluconazole, and the lesion showed regression on serial imaging. This case report thus highlights an unconventional presentation of pulmonary cryptococcosis in an immunocompetent individual.
Fungal infection in the oral cavity is not uncommon. The site involved is usually species related. Cryptococcus rarely infects the oral cavity. We report an elderly patient who presented with a central lesion on the dorsum of the tongue. Biopsy revealed a fungal infection. Special stains confirmed cryptococcus. Being a rare location for cryptococcal infection, clinical suspicion should be correlated with histopathological examination. Once confirmed, the patient should be treated with an antifungal medication.
We report a case of Cryptococcus humicolus meningitis complicated by communicating hydrocephalus in an apparently immunocompetent 49-year-old psychiatric patient from a nursing home. He presented with a history of poor oral intake, weight loss, headache, vomiting, blurred vision, frequent falls and unsteady gait for the previous three months. He had a history of chronic cough, productive of whitish sputum for the previous month but no hemoptysis. Cerebrospinal fluid culture was positive for Cryptococcus humicolus. He was treated with intravenous amphotericin B and oral fluconazole and had clinical and microbiological improvement after three weeks of treatment. Unfortunately, the patient acquired nosocomial methicillin-resistant Staphylococcus aureus infection and died due to overwhelming sepsis.
Cryptococcus neoformans is an encapsulated basidiomycetous yeast commonly associated with pigeon droppings and soil. The opportunistic pathogen infects humans through the respiratory system and the metabolic implications of C. neoformans infection have yet to be explored. Studying the metabolic profile associated with the infection could lead to the identification of important metabolites associated with pulmonary infection. Therefore, the aim of the study was to simulate cryptococcal infection at the primary site of infection, the lungs, and to identify the metabolic profile and important metabolites associated with the infection at low and high multiplicity of infections (MOI). The culture supernatant of lung epithelial cells infected with C. neoformans at MOI of 10 and 100 over a period of 18 hours were analysed using gas chromatography mass spectrometry. The metabolic profiles obtained were further analysed using multivariate analysis and the pathway analysis tool, MetaboAnalyst 2.0. Based on the results from the multivariate analyses, ten metabolites were selected as the discriminatory metabolites that were important in both the infection conditions. The pathways affected during early C. neoformans infection of lung epithelial cells were mainly the central carbon metabolism and biosynthesis of amino acids. Infection at a higher MOI led to a perturbance in the β-alanine metabolism and an increase in the secretion of pantothenic acid into the growth media. Pantothenic acid production during yeast infection has not been documented and the β-alanine metabolism as well as the pantothenate and CoA biosynthesis pathways may represent underlying metabolic pathways associated with disease progression. Our study suggested that β-alanine metabolism and the pantothenate and CoA biosynthesis pathways might be the important pathways associated with cryptococcal infection.
Fungal osteomyelitis is a rare opportunistic infection. It exhibits some clinical and radiological similarities to several other bone pathologies. A diagnostic delay may result in significant increase in morbidity. We report a case of a 37-year-old man with underlying hypogammaglobulinaemia presented with isolated cryptococcal osteomyelitis of the femur.
Wet India ink mounts of cerebrospinal fluid (CSF) are useful in the laboratory diagnosis of cryptococcal meningitis. Pseudo-cryptococcal artefacts in such mounts have been attributed to leucocytes in CSF but their mode of formation has not been explained. This report describes the reproduction of such an artefact in cryptococcus free CSF-leucocyte mixtures that had been subjected to high speed centrifugation. The viscosity of DNA that could provide a morphological pseudo-capsule, and the yellow-green fluorescence of the pseudo-capsular material on staining with acridine-orange, suggest that lymphocytic nuclear DNA, which possibly leaked out after damage to the lymphocyte membrane by centrifugation, was responsible for this artefact.
The occurrence of Cryptococcus neoformans in bird excreta in Klang valley, Malaysia was determined in this study. Of 544 samples of bird excreta collected from a local zoo, pet shops and public areas, 20 strains of C. neoformans were isolated. All C. neoformans strains were serotype A and thus identified as C. neoformans variety grubii. All did not produce color changes on canavanine-glycine-bromothymol blue agar. All were of alpha-mating types, as determined by a pheromone-specific PCR assay. The antifungal susceptibility testing using agar diffusion method Neo-sensitabs showed that all were susceptible to amphotericin B, fluconazole and itraconazole.
Cryptococcus albidus and C. laurentii were the predominant non-neoformans cryptococci isolated during an environmental sampling study for C. gattii at Klang Valley, Malaysia. Cryptococcus gattii was not isolated from any of the environmental samples. Cryptococcus albidus and C. laurentii were isolated mainly from vegetative samples of Eucalyptus trees and bird droppings. Upon testing on canavanine-glycine-bromothymol blue (CGB) agar, all the C. albidus isolates remained unchanged. Interestingly, a total of 29 (76.3%) C. laurentii isolates formed blue colours on the CGB agar. Sequence analysis of ITS1-5.8rDNA-ITS2 gene sequences (468 bp) of four CGB-blue C. laurentii isolates demonstrated the closest match (99%) with that of C. laurentii CBS 7140. This study demonstrated the diverse environmental niche of C. albidus and C. laurentii in Malaysia.
The purpose of this investigation was to characterise the interactions of Cryptococcus neoformans with mammalian host alveolar epithelial cells and alveolar macrophages, with emphasis on the roles of the cryptococcal capsule and the host cell cytoskeletons. The adherence and internalisation of C. neoformans into mammalian lung cells and the roles of host cell cytoskeletons in host-pathogen interactions were studied using in vitro models coupled with a differential fluorescence assay, fluorescence staining, immunofluorescence and drug inhibition of actin and microtubule polymerisation. Under conditions devoid of opsonin and macrophage activation, C. neoformans has a high affinity towards MH-S alveolar macrophages, yet associated poorly to A549 alveolar epithelial cells. Acapsular C. neoformans adhered to and internalised into the mammalian cells more effectively compared to encapsulated cryptococci. Acapsular C. neoformans induced prominent actin reorganisation at the host-pathogen interface in MH-S alveolar macrophages, but minimally affected actin reorganisation in A549 alveolar epithelial cells. Acapsular C. neoformans also induced localisation of microtubules to internalised cryptococci in MH-S cells. Drug inhibition of actin and microtubule polymerisation both reduced the association of acapsular C. neoformans to alveolar macrophages. The current study visualises and confirms the interactions of C. neoformans with mammalian alveolar cells during the establishment of infection in the lungs. The acapsular form of C. neoformans effectively adhered to and internalised into alveolar macrophages by inducing localised actin reorganisation, relying on the host's actin and microtubule activities.