Displaying publications 1 - 20 of 64 in total

Abstract:
Sort:
  1. Swinbanks D
    Nature, 1997 Sep 25;389(6649):321.
    PMID: 9311764
    Matched MeSH terms: Fires*
  2. Flaherty G, Hession M, Cuggy C
    Travel Med Infect Dis, 2016 Sep-Oct;14(5):529-530.
    PMID: 27238904 DOI: 10.1016/j.tmaid.2016.05.011
    Matched MeSH terms: Fires*
  3. Lam SS, Waugh C, Peng W, Sonne C
    Science, 2020 02 14;367(6479):750.
    PMID: 32054755 DOI: 10.1126/science.aba8372
    Matched MeSH terms: Fires*
  4. Che Azmi NA, Mohd Apandi N, A Rashid AS
    Environ Sci Pollut Res Int, 2021 Apr;28(14):16948-16961.
    PMID: 33641100 DOI: 10.1007/s11356-021-12886-x
    Peat fires in tropical peatland release a substantial amount of carbon into the environment and cause significant harm to peatlands and the ecology, resulting in climate change, biodiversity loss, and the alteration of the ecosystem. It is essential to understand peat fires and to develop more effective methods for controlling them. To estimate carbon emissions and monitor fires, the depth of burning can measure the overall burnt down the volume, which is proportional to the carbon emissions that are emitted to the environment. The first step is to understand the technique of measuring the depth of the burn. However, there is a lack of integrated information regarding the burning depth for peat fires. This review paper discusses the techniques used to measure the burning depth, with particular attention given to quantifying carbon emissions. The article also provides information on the types of methods used to determine the burning depths. This research contributes to the field of peat fire by providing a readily available reference for practitioners and researchers on the current state of knowledge on peat fire monitoring systems.
    Matched MeSH terms: Fires*
  5. Rahmat RA, Humphries MA, Austin JJ, Linacre AMT, Raven M, Self P
    Forensic Sci Int, 2020 May;310:110236.
    PMID: 32172179 DOI: 10.1016/j.forsciint.2020.110236
    Heat alters colour and crystallinity of teeth by destruction of the organic content and inducing hydroxyapatite crystal growth. The colour and crystallite changes can be quantified using spectrophotometric and x-ray diffraction analyses, however these analyses are not commonly used in combination to evaluate burned dental remains. In this study, thirty-nine teeth were incinerated at 300-1000 °C for 15 and 30 min and then measured using a spectrophotometer and an x-ray diffractometer. Response variables used were lightness, L*, and chromaticity a* and b* and luminance (whiteness and yellowness) for colour, and crystal size for crystallinity. Statistical analysis to determine the attribution of these variables revealed yellowness and crystal size were significantly affected by temperature (p < 0.05), whilst duration of heat-exposure showed no significant effect. This study suggests the inclusion of both spectrophotometric and x-ray diffraction in investigating thermal-heated teeth is useful to accurately estimate the temperature teeth are exposed to.
    Matched MeSH terms: Fires*
  6. Yew MC, Ramli Sulong NH, Yew MK, Amalina MA, Johan MR
    ScientificWorldJournal, 2014;2014:805094.
    PMID: 25136687 DOI: 10.1155/2014/805094
    This paper aims to synthesize and characterize an effective intumescent fire protective coating that incorporates eggshell powder as a novel biofiller. The performances of thermal stability, char formation, fire propagation, water resistance, and adhesion strength of coatings have been evaluated. A few intumescent flame-retardant coatings based on these three ecofriendly fire retardant additives ammonium polyphosphate phase II, pentaerythritol and melamine mixed together with flame-retardant fillers, and acrylic binder have been prepared and designed for steel. The fire performance of the coatings has conducted employing BS 476: Part 6-Fire propagation test. The foam structures of the intumescent coatings have been observed using field emission scanning electron microscopy. On exposure, the coated specimens' B, C, and D had been certified to be Class 0 due to the fact that their fire propagation indexes were less than 12. Incorporation of ecofriendly eggshell, biofiller into formulation D led to excellent performance in fire stopping (index value, (I) = 4.3) and antioxidation of intumescent coating. The coating is also found to be quite effective in water repellency, uniform foam structure, and adhesion strength.
    Matched MeSH terms: Fires/prevention & control*
  7. Dymond CC, Field RD, Roswintiarti O, Guswanto
    Environ Manage, 2005 Apr;35(4):426-40.
    PMID: 15902449
    Vegetation fires have become an increasing problem in tropical environments as a consequence of socioeconomic pressures and subsequent land-use change. In response, fire management systems are being developed. This study set out to determine the relationships between two aspects of the fire problems in western Indonesia and Malaysia, and two components of the Canadian Forest Fire Weather Index System. The study resulted in a new method for calibrating components of fire danger rating systems based on satellite fire detection (hotspot) data. Once the climate was accounted for, a problematic number of fires were related to high levels of the Fine Fuel Moisture Code. The relationship between climate, Fine Fuel Moisture Code, and hotspot occurrence was used to calibrate Fire Occurrence Potential classes where low accounted for 3% of the fires from 1994 to 2000, moderate accounted for 25%, high 26%, and extreme 38%. Further problems arise when there are large clusters of fires burning that may consume valuable land or produce local smoke pollution. Once the climate was taken into account, the hotspot load (number and size of clusters of hotspots) was related to the Fire Weather Index. The relationship between climate, Fire Weather Index, and hotspot load was used to calibrate Fire Load Potential classes. Low Fire Load Potential conditions (75% of an average year) corresponded with 24% of the hotspot clusters, which had an average size of 30% of the largest cluster. In contrast, extreme Fire Load Potential conditions (1% of an average year) corresponded with 30% of the hotspot clusters, which had an average size of 58% of the maximum. Both Fire Occurrence Potential and Fire Load Potential calibrations were successfully validated with data from 2001. This study showed that when ground measurements are not available, fire statistics derived from satellite fire detection archives can be reliably used for calibration. More importantly, as a result of this work, Malaysia and Indonesia have two new sources of information to initiate fire prevention and suppression activities.
    Matched MeSH terms: Fires/prevention & control*
  8. Breulman G, Markert B, Weckert V, Herpin U, Yoneda R, Ogino K
    Sci Total Environ, 2002 Feb 21;285(1-3):107-15.
    PMID: 11874033
    Leaf samples of tropical trees, i.e. Dryobalanops lanceolata (Kapur paji), Dipterocarpaceae and Macaranga spp. (Mahang), Euphorbiaceae were analyzed for 21 chemical elements. The pioneer Macaranga spp. exhibited higher concentrations for the majority of elements compared to the emergent species of Dryobalanops lanceolata, which was attributed to the higher physiological activity of the fast growing pioneer species compared to emergent trees. Lead showed rather high concentrations in several samples from the Bakam re-forestation site. This is suggested to be caused by emissions through brick manufacturing and related activities in the vicinity. A comparison of Dryobalanops lanceolata samples collected in 1993, 1995 and 1997 in the Lambir Hills National Park revealed that certain heavy metals, i.e. Co, Cu, Mn, Ni, Pb and Ti showed higher values in 1997 compared to the previous years, which could indicate an atmospheric input from the haze caused by the extensive forest fires raging in Borneo and other parts of Southeast Asia.
    Matched MeSH terms: Fires*
  9. Dalu MTB, Dalu T, Wasserman RJ
    Nature, 2017 07 19;547(7662):281.
    PMID: 28726820 DOI: 10.1038/547281c
    Matched MeSH terms: Fires/prevention & control*
  10. Yahaghi J, Sorooshian S
    Sci Eng Ethics, 2018 04;24(2):819-820.
    PMID: 28281150 DOI: 10.1007/s11948-017-9892-4
    Matched MeSH terms: Fires*
  11. El-Harbawi M, Samir BB, El Blidi L, Ben Ghanem O
    PLoS One, 2019;14(11):e0224807.
    PMID: 31725738 DOI: 10.1371/journal.pone.0224807
    Two novel and highly accurate hybrid models were developed for the prediction of the flammability limits (lower flammability limit (LFL) and upper flammability limit (UFL)) of pure compounds using a quantitative structure-property relationship approach. The two models were developed using a dataset obtained from the DIPPR Project 801 database, which comprises 1057 and 515 literature data for the LFL and UFL, respectively. Multiple linear regression (MLR), logarithmic, and polynomial models were used to develop the models according to an algorithm and code written using the MATLAB software. The results indicated that the proposed models were capable of predicting LFL and UFL values with accuracies that were among the best (i.e. most optimised) reported in the literature (LFL: R2 = 99.72%, with an average absolute relative deviation (AARD) of 0.8%; UFL: R2 = 99.64%, with an AARD of 1.41%). These hybrid models are unique in that they were developed using a modified mathematical technique combined three conventional methods. These models afford good practicability and can be used as cost-effective alternatives to experimental measurements of LFL and UFL values for a wide range of pure compounds.
    Matched MeSH terms: Fires*
  12. Nature, 1997 Sep 25;389(6649):315.
    PMID: 9311758
    Matched MeSH terms: Fires
  13. Aliff, Farhan Bustani M., Siti Aslina Hussain
    MyJurnal
    Quantitative Risk Assessment (QRA) nowadays is an established risk assessment method used worldwide for the evaluation of risks on onshore plant and offshore facilities which associated with the major hazard installations. However, there are still many issues on QRA used. These include lack of consistency, complexity of the overall model structure, incorporation of new data, methodology and model analysis. Common problem observed for the onshore QRA methodology is conservatism of fire and explosion consequence results using DNV PhastRisk 6.7 software which is mainly contributed from the high release rate due to loss of containment. This paper presents an alternative way to predict the actual release rate for fire and explosion modelling which called limiting flowrate technique. This method has been applied for calculating risk in Onshore Gas Terminal (OGT) Plant. Adopting the limiting flowrate technique has provide more precise model towards real scenarios. Challenges facing during this research such as using the unmodified United Kingdom (UK) HSE hydrocarbon release database without integrate with the actual failure frequencies from the plant, the risk results tend to be much higher than actual experience. It should be noted that the development of improved onshore risk model has been used as an example for this research but many of the issues are equally applicable to offshore studies as well.
    Matched MeSH terms: Fires
  14. Toh, Jia Lin, Siti Aslina Hussain
    MyJurnal
    Company A is a brownfield refinery that had been in service for over 25 years and has its own system to generate GOX for its needed utility usage. Noting of the hazards of GOX and in consideration of an aged refinery, this research is of the intent to evaluate the risk of GOX in the aspect of personnel and process safety; and to provide recommendation or mitigations planning with regards to Company A’s existing hardware through Bow Tie review. The analysis was done taking into consideration the data compiled as well as the inherited Process Safety Assessment (PSA) findings of Company A that served as secondary data to this research. It was observed that Company A personnel are well versed with the risk and hazards of GOX system and through the plant rejuvenation and material upgrade works, the hazards were mitigated to a lower risk within the risk matrix. The implementation and upgrade works had served to add more barriers to the left side of the bow tie as well as ensuring that the aged complex is well equipped with needed safeguarding strategies (from inherent safer design, passive & active safeguarding and procedural controls) to avoid the occurrence of potential oxygen fire or explosion incident.
    Matched MeSH terms: Fires
  15. Muniasamy, Arun Kumar, Tinia Idaty Binti Mohd Ghazi
    MyJurnal
    The effects of propylene stored in pressurized spherical vessel were investigated using radiation & explosion modeling using PHAST 6.7 software in one of the refinery in Malaysia. The simulations were performed for various weather conditions with different leak scenarios in deterministic approach. Modeling approach was standard with current industry practice. Resulting events such as jet fire, vapor cloud explosion, boiling liquid evaporating vapor explosion effects shown in thermal radiation and overpressure towards targeted technical buildings. The effects of resulting jet fire flame length increase with release rate and explosion overpressure effects increase with degree of confinement and volume fraction respectively. The results were reviewed, interpreted against industry standard. The sensitivity cases show that, using lower inventory with moderate operating conditions will keep the consequence in acceptable region. This consequence analysis will form a basis for layout development, safety distance and fire zone segregation during conceptual design stage. Propylene storage conditions, layout arrangements and blast protections were recommended as part of preventive and mitigative measures.
    Matched MeSH terms: Fires
  16. Othuman Mydin MA, Zamzani NM, Ghani ANA
    Data Brief, 2019 Aug;25:104320.
    PMID: 31428668 DOI: 10.1016/j.dib.2019.104320
    Quantifying the elevated temperature strengths of cement-based material is crucial to the design of building structural systems for fire resistance purpose. This paper collates a database of elevated temperature axial compressive and flexural strengths of coir fibre reinforced foamed concrete exposed to heating temperatures of 105 °C, 200 °C, 300 °C, 400 °C, 500 °C, 600 °C, 700 °C and 800 °C. There were four densities of foamed concrete of 700, 1100, 1500 and 1900 kg/m3 were prepared and tested. The untreated coir fibre was added in foamed concrete in percentages of 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, and 0.6% by mix volume fraction. The database can aid in prediction of elevated temperature strengths of fibre reinforced foamed concrete which can be exploited to assist manufacturers to develop their products without having to perform numerous large-scale elevated temperature tests in the future.
    Matched MeSH terms: Fires
  17. Mujeebu MA, Abdullah MZ, Bakar MZ, Mohamad AA, Muhad RM, Abdullah MK
    J Environ Manage, 2009 Jun;90(8):2287-312.
    PMID: 19299066 DOI: 10.1016/j.jenvman.2008.10.009
    The rapid advances in technology and improved living standard of the society necessitate abundant use of fossil fuels which poses two major challenges to any nation. One is fast depletion of fossil fuel resources; the other is environmental pollution. The porous medium combustion (PMC) has proved to be one of the technically and economically feasible options to tackle the aforesaid problems to a remarkable extent. PMC has interesting advantages compared with free flame combustion due to the higher burning rates, the increased power dynamic range, the extension of the lean flammability limits, and the low emissions of pollutants. This article provides a comprehensive picture of the global scenario of research and developments in PMC and its applications that enable a researcher to decide the direction of further investigation. The works published so far in this area are reviewed, classified according to their objectives and presented in an organized manner with general conclusions. A separate section is devoted for the numerical modeling of PMC.
    Matched MeSH terms: Fires*
  18. Abas MR, Omar NY, Maah MJ
    J Environ Sci (China), 2004;16(5):751-4.
    PMID: 15559805
    PM10 airborne particles and soot deposit collected after a fire incident at a chemical store were analyzed in order to determine the concentrations of polycyclic aromatic hydrocarbons (PAHs). The samples were extracted with 1:1 hexane-dichloromethane by ultrasonic agitation. The extracts were then subjected to gas chromatography-mass spectrometric (GC-MS) analysis. The total PAHs concentrations in airborne particles and soot deposit were found to be 3.27 +/- 1.55 ng/m3 and 12.81 +/- 24.37 microg/g, respectively. Based on the molecular distributions of PAHs and the interpretation of their diagnostic ratios such as PHEN/(PHEN + ANTH), FLT/(FLT + PYR) and BeP/(BeP + BaP), PAHs in both airborne particles and soot deposit may be inferred to be from the same source. The difference in the value of IP/(IP + BgP) for these samples indicated that benzo[g, h, i] perylene and coronene tend to be attached to finer particles and reside in the air for longer periods. Comparison between the molecular distributions of PAHs and their diagnostic ratios observed in the current study with those reported for urban atmospheric and roadside soil particles revealed that they are of different sources.
    Matched MeSH terms: Fires*
  19. Mims FM
    Nature, 1997 Nov 20;390(6657):222-3.
    PMID: 9384366 DOI: 10.1038/36715
    Matched MeSH terms: Fires*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links