Displaying publications 1 - 20 of 30 in total

Abstract:
Sort:
  1. Alsharif AM, Tan GH, Choo YM, Lawal A
    J Chromatogr Sci, 2017 03 01;55(3):378-391.
    PMID: 27903555 DOI: 10.1093/chromsci/bmw188
    Hollow fiber liquid-phase microextraction (HF-LPME) techniques coupled to chromatographic systems have been widely used for extraction and determination of diverse compounds. HF-LPME was able to provide better results in precision, accuracy, selectivity and enrichment factor, in addition to reduction of matrix effect and carry over. It is applicable within a wide pH range and compatible with most analytical instruments which enable the utilization of HF-LPME in a wide variety of applications. This review focused on the modified HF-LPME techniques, efficiency, comparison to other LPME methods and applications.
    Matched MeSH terms: Liquid Phase Microextraction/methods*
  2. Loh SH, Sanagi MM, Wan Ibrahim WA, Hasan MN
    J Chromatogr A, 2013 Aug 9;1302:14-9.
    PMID: 23809804 DOI: 10.1016/j.chroma.2013.06.010
    A new microextraction procedure termed agarose gel liquid phase microextraction (AG-LPME) combined with gas chromatography-mass spectrometry (GC-MS) was developed for the determination of selected polycyclic aromatic hydrocarbons (PAHs) in water. The technique utilized an agarose gel disc impregnated with the acceptor phase (1-octanol). The extraction procedure was performed by allowing the solvent-impregnated agarose gel disc to tumble freely in the stirred sample solution. After extraction, the agarose gel disc was removed and subjected to centrifugation to disrupt its framework and to release the impregnated solvent, which was subsequently withdrawn and injected into the GC-MS for analysis. Under optimized extraction conditions, the new method offered high enrichment factors (89-177), trace level LODs (9-14ngL(-1)) and efficient extraction with good relative recoveries in the range of 93.3-108.2% for spiked drinking water samples. AG-LPME did not exhibit any problems related to solvent dissolution, and it provided high extraction efficiencies that were comparable to those of hollow fiber liquid phase microextraction (HF-LPME) and significantly higher than those of agarose film liquid phase microextraction (AF-LPME). This technique employed a microextraction format and utilized an environmentally compatible solvent holder that supported the green chemistry concept.
    Matched MeSH terms: Liquid Phase Microextraction/methods*
  3. Lawal A, Tan GH, Alsharif AM
    J AOAC Int, 2016 Nov 01;99(6):1383-1394.
    PMID: 27667201 DOI: 10.5740/jaoacint.16-0272
    Food quality and food safety are major challenges affecting agricultural and industrial aspects of production. Many contaminants from different sources contaminate foods and drinks, leading to disastrous health problems like gene mutations and cancer. Previously, many different methods have been used for the analysis of these contaminants. Liquid-liquid extraction (LLE) has been the most well-known conventional technique used, but its limitations are its tediousness, time required, and the use of large quantities of toxic organic solvents. These limitations have led to the search for other, efficient techniques that are more environmentally friendly. Hence, this review highlights recent advances in liquid-phase (single-drop, hollow fiber, and dispersive liquid-liquid) microextraction procedures for food and drink analyses. Such modifications can be justified for solving limitations associated with the traditional LLE method. The objective of this review is to serve as a reference platform for providing effective management tools for solving problems of pollution, clean-up, and control of food quality and safety globally.
    Matched MeSH terms: Liquid Phase Microextraction*
  4. Ben-Hander GM, Makahleh A, Saad B, Saleh MI
    PMID: 24200841 DOI: 10.1016/j.jchromb.2013.10.007
    A three phase hollow fiber liquid-phase microextraction with in situ derivatization (in situ HF-LPME) followed by high-performance liquid chromatography-ultraviolet detection (HPLC-UV) method was developed for the trace determination of metformin hydrochloride (MH) in biological fluids. A new derivatization agent pentafluorobenzoyl chloride (PFBC) was used. Several parameters that affect the derivatization and extraction efficiency were studied and optimized (i.e., type of organic solvent, volume of NaOH (4M) and derivatization agent in the donor phase, acceptor phase (HCl) concentration, stirring speed, temperature, time and salt addition). Under the optimum conditions (organic solvent, dihexyl ether; volume of NaOH (4M) and derivatization agent (10mg PFBC in 1mL acetonitrile) in the donor phase, 600 and100μL, respectively; acceptor phase, 100mM HCl (10μL); stirring speed, 300rpm; extraction time, 30min; derivatization temperature, 70°C; without addition of salt) an enrichment factor of 210-fold was achieved. Good linearity was observed over the range of 1-1000ngmL(-1) (r(2)=0.9998). The limits of detection and quantitation were 0.56 and 1.68ngmL(-1), respectively. The proposed method has been applied for the determination of MH in biological fluids (plasma and urine) and water samples. Prior to the microextraction treatment of plasma samples, deproteinization step using acetonitrile was conducted. The proposed method is simple, rapid, sensitive and suitable for the determination of MH in a variety of samples.
    Matched MeSH terms: Liquid Phase Microextraction/methods*
  5. Hadi H, Makahleh A, Saad B
    PMID: 22503735 DOI: 10.1016/j.jchromb.2012.03.031
    A hollow fiber liquid phase microextraction (HF-LPME) in conjunction with reversed phase HPLC-UV method was developed for the extraction and determination of trace amounts of the antidiabetic drug, mitiglinide (MIT) in biological fluids. The drug was extracted from 10 mL aqueous sample (donor phase (DP)) into an organic phase impregnated in the pores of hollow fiber, followed by the back extraction into a second aqueous solution (acceptor phase (AP)) located in the lumen of the hollow fiber. Parameters influencing the extraction efficiency including the kind of organic solvent, composition of DP and AP, extraction time, stirring rate and salt addition were investigated and optimized. Under the optimized extraction conditions, high enrichment factors (210-fold), good linearity (5-1000 ng mL(-1)) and detection limit lower than 1.38 ng mL(-1) were achieved. Recoveries of spiked samples were in the range (88.3-96.3%) and (92.0-99.3%) for urine and plasma samples, respectively. The percent relative standard deviation (n=9) for the extraction and determination of three concentration levels (100, 400 and 800 ng mL(-1)) of MIT were less than 10.6% and 13.6% for urine and plasma samples, respectively. The developed method is simple, sensitive and has been successfully applied to the analysis of MIT in biological fluids.
    Matched MeSH terms: Liquid Phase Microextraction/instrumentation; Liquid Phase Microextraction/methods*
  6. Abdulra'uf LB, Sirhan AY, Huat Tan G
    J Sep Sci, 2012 Dec;35(24):3540-53.
    PMID: 23225719 DOI: 10.1002/jssc.201200427
    The sample preparation step has been identified as the bottleneck of analytical methodology in chemical analysis. Therefore, there is need for the development of cost-effective, easy to operate, and environmentally friendly miniaturized sample preparation technique. The microextraction techniques combine extraction, isolation, concentration, and introduction of analytes into analytical instrument, to a single and uninterrupted step, and improve sample throughput. The use of liquid-phase microextraction techniques for the analysis of pesticide residues in fruits and vegetables are discussed with the focus on the methodologies employed by different researchers and their analytical performances. Analytes are extracted using water-immiscible solvents and are desorbed into gas chromatography, liquid chromatography, or capillary electrophoresis for identification and quantitation.
    Matched MeSH terms: Liquid Phase Microextraction
  7. Sanagi MM, Loh SH, Wan Ibrahim WN, Pourmand N, Salisu A, Wan Ibrahim WA, et al.
    J Sep Sci, 2016 Mar;39(6):1152-9.
    PMID: 27027592 DOI: 10.1002/jssc.201501207
    Recently, there has been considerable interest in the use of miniaturized sample preparation techniques before the chromatographic monitoring of the analytes in unknown complex compositions. The use of biopolymer-based sorbents in solid-phase microextraction techniques has achieved a good reputation. A great variety of polysaccharides can be extracted from marine plants or microorganisms. Seaweeds are the major sources of polysaccharides such as alginate, agar, agarose, as well as carrageenans. Agarose and alginate (green biopolymers) have been manipulated for different microextraction approaches. The present review is focused on the classification of biopolymer and their applications in multidisciplinary research. Besides, efforts have been made to discuss the state-of-the-art of the new microextraction techniques that utilize commercial biopolymer interfaces such as agarose in liquid-phase microextraction and solid-phase microextraction.
    Matched MeSH terms: Liquid Phase Microextraction
  8. Chong YT, Mohd Ariffin M, Mohd Tahir N, Loh SH
    Talanta, 2018 Jan 01;176:558-564.
    PMID: 28917790 DOI: 10.1016/j.talanta.2017.08.068
    Electro-mediated microextraction (EMM) combined with micro-high performance liquid chromatography-ultraviolet detection was successfully developed for the determination of selected phenols, namely 4-chlorophenol (4CP), 2-nitrophenol (2NP) and 2,4-dichlorophenols (2,4 DCP) in water. A solvent-impregnated agarose gel disc was utilized as a solvent holder in this study. Under optimum extraction conditions, the method showed good linearity in the range of 0.1-250µgL-1, 0.3-250µgL-1and 0.2-500µgL-1for 4CP, 2NP and 2,4 DCP, respectively with correlation coefficients of ≥ 0.9975, ultra-trace LODs (0.03-0.1µgL-1) and satisfactory relative recovery average (85.0-114.1%) for the analysis of selected phenols. The proposed method was rapid and eco-friendly as the solvent holder was constructed using minute amounts of extraction solvent immobilized within the biodegradable agarose gel disc. A comparative microextraction technique termed solvent-impregnated agarose gel liquid phase microextraction (AG-LPME) was re-optimized and validated for the extraction of phenols in water. The method offered good linearity, ultra-trace LODs ranging 0.1-0.5µgL-1and satisfactory average of relative recovery (86.1-114.1%). The EMM was superior in terms of sensitivity and time-effectiveness compared to AG-LPME. Both techniques combine extraction and pre-concentration in mini-scaled approaches using an eco-friendly solvent holder that fulfil the green chemistry concept.
    Matched MeSH terms: Liquid Phase Microextraction
  9. Moniruzzaman M, Rodríguez I, Rodríguez-Cabo T, Cela R, Sulaiman SA, Gan SH
    J Chromatogr A, 2014 Nov 14;1368:26-36.
    PMID: 25441341 DOI: 10.1016/j.chroma.2014.09.057
    The suitability of the dispersive liquid-liquid microextraction (DLLME) technique for gas chromatography (GC) characterization of minor organic compounds in honey samples is evaluated. Under optimized conditions, samples were pre-treated by liquid-liquid extraction with acetonitrile followed by DLLME using carbon tetrachloride (CCl4, 0.075 mL) as extractant. The yielded settled phase was analyzed by GC using high resolution time-of-flight (TOF) mass spectrometry (MS). The whole sample preparation process is completed in approximately 10 min, with a total consumption of organic solvents below 4 mL, relative standard deviations lower than 12% and with more than 70 organic compounds, displaying linear retention index in the range from 990 to 2900, identified in the obtained extracts. In comparison with HS SPME extraction, higher peak intensities were attained for most volatile and semi-volatile compounds amenable to both extraction techniques. Furthermore, other species such as highly polar and water soluble benzene acids, long chain fatty acids, esters and flavonoids, which are difficult to concentrate by HS SPME, could be identified in DLLME extracts. Some of the compounds identified in DLLME extracts have been proposed as useful for samples classification and/or they are recognized as markers of honeys from certain geographic areas.
    Matched MeSH terms: Liquid Phase Microextraction/methods*
  10. Ben-Hander GM, Makahleh A, Saad B, Saleh MI, Cheng KW
    Talanta, 2015 Jan;131:590-6.
    PMID: 25281145 DOI: 10.1016/j.talanta.2014.08.037
    A new analytical method for the simultaneous determination of the antidiabetic drugs rosiglitazone (ROS) and metformin hydrochloride (MH) with marked differences in their affinity towards organic solvents (log P of 2.4 and -1.43, respectively) was developed. Prior to the HPLC separation, the drugs were subjected to a sequential hollow fiber liquid phase microextraction (HF-LPME) procedure. Two sequential HF-LPME approaches were considered, the preferred one involves the use of two vials containing solution mixtures for the extraction of ROS (vial 1) and MH (vial 2), respectively, but using the same fiber and acceptor phase. Important parameters that affect the extraction efficiency such as extracting solvent, donor phase conditions, HCl concentration, agitation, extraction time, addition of salt, etc. were studied. Under the optimum conditions, good enrichment factors (EF, 471 and 86.6 for ROS and MH, respectively) were achieved. Calibration curves were linear over the range 1-500 (r(2)=0.998) and 5-2500 ng mL(-1) (r(2)=0.999) for ROS and MH, respectively. The relative standard deviation values (RSD%) for six replicates were below 8.4%. Detection and quantitation limits based on S/N ratio of 3 and 10 were 0.12, 1.0 and 0.36, 3.0 ng mL(-1) for ROS and MH, respectively. The proposed method is simple, sensitive and opens up new opportunities for the microextraction of analytes with contrasting properties.
    Matched MeSH terms: Liquid Phase Microextraction/methods*
  11. Sanagi MM, Abbas HH, Ibrahim WA, Aboul-Enien HY
    Food Chem, 2012 Jul 15;133(2):557-62.
    PMID: 25683433 DOI: 10.1016/j.foodchem.2012.01.036
    Dispersive liquid-liquid microextraction method based on solidification of floating organic droplet (DLLME-SFO) was developed for the analysis of triazines. As model compounds four selected triazine herbicides namely, simazine, atrazine, secbumeton and cyanazine were employed to estimate the extraction efficiency. The experimental conditions were comprehensively studied for the DLLME-SFO method. Under the use of 10 μL of 1-undecanol as extraction solvent, 100 μL of acetonitrile as disperser solvent and 5% (w/v) NaCl for 3 min the results demonstrated that the repeatability (RSD%) of the optimised DLLME-SFO method ranged from 0.03% to 5.1% and the linearity in the range of 0.01-100 ppb. Low limits of detection (0.037-0.008 ppb), and good enrichment factors (195-322) were obtained. The DLLME-SFO method applied in water and sugarcane samples showed excellent relative recoveries (95.7-116.9%) with RSDs <8.6% (n=3) for all samples.
    Matched MeSH terms: Liquid Phase Microextraction/methods*
  12. Sanagi MM, Loh SH, Wan Ibrahim WA, Hasan MN, Aboul Enein HY
    J Chromatogr Sci, 2013 Feb;51(2):112-6.
    PMID: 22776739 DOI: 10.1093/chromsci/bms113
    In this work, a two-phase hollow fiber liquid-phase microextraction (HF-LPME) method combined with gas chromatography-mass spectrometry (GC-MS) is developed to provide a rapid, selective and sensitive analytical method to determine polycyclic aromatic hydrocarbons (PAHs) in fresh milk. The standard addition method is used to construct calibration curves and to determine the residue levels for the target analytes, fluorene, phenanthrene, fluoranthene, pyrene and benzo[a]pyrene, thus eliminating sample pre-treatment steps such as pH adjustment. The HF-LPME method shows dynamic linearity from 5 to 500 µg/L for all target analytes with R(2) ranging from 0.9978 to 0.9999. Under optimized conditions, the established detection limits range from 0.07 to 1.4 µg/L based on a signal-to-noise ratio of 3:1. Average relative recoveries for the determination of PAHs studied at 100 µg/L spiking levels are in the range of 85 to 110%. The relative recoveries are slightly higher than those obtained by conventional solvent extraction, which requires saponification steps for fluorene and phenanthrene, which are more volatile and heat sensitive. The HF-LPME method proves to be simple and rapid, and requires minimal amounts of organic solvent that supports green analysis.
    Matched MeSH terms: Liquid Phase Microextraction/methods*
  13. Salim SA, Sukor R, Ismail MN, Selamat J
    Toxins (Basel), 2021 04 15;13(4).
    PMID: 33920815 DOI: 10.3390/toxins13040280
    Rice bran, a by-product of the rice milling process, has emerged as a functional food and being used in formulation of healthy food and drinks. However, rice bran is often contaminated with numerous mycotoxins. In this study, a method to simultaneous detection of aflatoxins (AFB1, AFB2, AFG1, and AFG2), ochratoxin A (OTA), deoxynivalenol (DON), fumonisins (FB1 and FB2), sterigmatocystin (STG), T-2 toxin, HT-2 toxin, diacetoxyscirpenol (DAS) and zearalenone (ZEA) in rice bran was developed, optimized and validated using dispersive liquid-liquid microextraction (DLLME) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). In DLLME, using a solvent mixture of methanol/water (80:20, v/v) as the dispersive solvent and chloroform as the extraction solvent with the addition of 5% salt improved the extraction recoveries (63-120%). The developed method was further optimized using the response surface methodology (RSM) combined with Box-Behnken Design (BBD). Under the optimized experimental conditions, good linearity was obtained with a correlation coefficient (r2) ≥ 0.990 and a limit of detection (LOD) between 0.5 to 50 ng g-1. The recoveries ranged from 70.2% to 99.4% with an RSD below 1.28%. The proposed method was successfully applied to analyze multi-mycotoxin in 24 rice bran samples.
    Matched MeSH terms: Liquid Phase Microextraction*
  14. Shalash M, Makahleh A, Salhimi SM, Saad B
    Talanta, 2017 Nov 01;174:428-435.
    PMID: 28738603 DOI: 10.1016/j.talanta.2017.06.039
    A vortex-assisted liquid-liquid-liquid microextraction method followed by high performance liquid chromatography-diode array detection for the determination of fourteen phenolic acids (cinnamic, m-coumaric, chlorogenic, syringic, ferulic, o-coumaric, p-coumaric, vanillic, p-hydroxybenzoic, caffeic, 2, 4-dihydroxybenzoic, sinapic, gentisic and gallic acids) in honey, iced tea and canned coffee drink samples has been developed. The separation was achieved using a Poroshell 120-EC-C18 column under a gradient elution at a flow rate of 0.6mLmin-1 and mobile phase composed of methanol and acetic acid (1%, v/v). Under the optimum chromatographic conditions, the fourteen phenolic acids were separated in less than 32min. The extraction was performed using a small volume (400µL) of ternary organic solvents (1-pentanol, propyl acetate and 1-hexanol) dispersed into the aqueous sample (10mL) and assisted by vortex agitation (2500rpm for 45s), the analytes were next back-extracted from the organic solvent using 0.02M KOH (40µL) with vortex speed and time of 2500rpm and 60s, respectively. Under these conditions, enrichment factors of 30-193-fold were achieved. The limits of detection (LODs) were 0.05-0.68µgL-1. Recoveries in honey, iced tea and canned coffee drinks were in the range 72.2-112%. The method was successfully applied for the determination of the phenolic acids in honey, iced tea and canned coffee drinks.
    Matched MeSH terms: Liquid Phase Microextraction/methods*
  15. Alshishani A, Makahleh A, Yap HF, Gubartallah EA, Salhimi SM, Saad B
    Talanta, 2016 Dec 01;161:398-404.
    PMID: 27769423 DOI: 10.1016/j.talanta.2016.08.067
    A new sample preparation method, ion-pair vortex assisted liquid-liquid microextraction (VALLME-BE), for the determination of a highly polar anti-diabetic drug (metformin) in plasma sample was developed. The VALLME-BE was performed by diluting the plasma in borate buffer and extracted to 150µL 1-octanol containing 0.2M di-(2-ethylhexyl)phosphoric acid as intermediate phase. The drug was next back-extracted into 20µL of 0.075M HCl solution. The effects of pH, ion-pair concentration, type of organic solvent, volume of extraction phases, ionic strength, vortexing and centrifugation times on the extraction efficiency were investigated. The optimum conditions were at pH 9.3, 60s vortexing and 2min centrifugation. The microextract, contained metformin and buformin (internal standard), was directly injected into a HPLC unit using C1 column (250mm×4.6mm×10µm) and detected at 235nm. The method was validated and calibration curve was linear with r2>0.99 over the range of 20-2000µgL-1. The limits of detection and quantitation were 1.4 and 4.1µgL-1, respectively. The accuracy was within 94.8-108% of the nominal concentration. The relative standard deviation for inter- and intra-day precision was less than 10.8%. The method was conveniently applied for the determination of metformin in plasma samples.
    Matched MeSH terms: Liquid Phase Microextraction/methods
  16. Makahleh A, Yap HF, Saad B
    Talanta, 2015 Oct 01;143:394-401.
    PMID: 26078176 DOI: 10.1016/j.talanta.2015.05.011
    A new, rapid and sensitive microextraction technique named vortex-assisted liquid-liquid-liquid microextraction (VALLLME) is proposed. The complete extraction process involves two steps. First, a vortex-assisted liquid-liquid microextraction (VALLME) procedure was used to extract the analytes from a relatively large volume of sample (donor phase) to a small volume of organic solvent (intermediate phase). Next, a micro-vortex-assisted liquid-liquid extraction (µ-VALLE) was used to extract the target analytes from the intermediate phase to a smaller volume of aqueous solution (acceptor phase). The final extract (acceptor phase) can be directly injected into the high performance liquid chromatography or capillary electrophoresis units without any further treatments. The selection of the intermediate phase and the manipulation of pH are key parameters that ensure good extraction efficiency of the technique. The proposed technique has been successfully applied for the determination of carvedilol (used as model analyte) in biological fluid samples. The optimum extraction conditions were: toluene as intermediate phase (150 μL); pH of the donor phase, 9.5; vortex time of the VALLME, 45 s (maximum speed, 2500 rpm); 0.1M HCl (15 μL) as acceptor phase; vortexing time of the µ-VALLME, 75 s (maximum stirring speed, 2500 rpm) and salt concentration in the donor phase, 5% (w/v). Under these conditions, enrichment factors of 51- and 418-fold for VALLME step and VALLLME procedure, respectively, were achieved.
    Matched MeSH terms: Liquid Phase Microextraction
  17. Shan TO, Mee LN, Marinah Mohd Ariffin, Saw HL
    Sains Malaysiana, 2017;46:615-621.
    Bisphenol A is an endocrine disruptor with widespread applications, especially in the production of polycarbonate and epoxy resins. Dispersive liquid-liquid microextraction based on solidification of floating organic technique has been developed for the extraction of bisphenol A from water and soft drink. The 1-undecanol has been applied as the extraction solvent because of its low density and melting point and high affinity to the analyte. The technique offered rapid and simple analysis as the 1-undecanol was homogeneously dispersed in the sample solution to speed the extraction and the collection of extraction solvent was simplified by centrifugation, cooling and melting steps.
    Matched MeSH terms: Liquid Phase Microextraction
  18. LIANG SUN TAN, SAW HONG LOH
    MyJurnal
    Polycyclic aromatic hydrocarbons (PAHs) are hazardous and persistent organic pollutants that usually exist at low concentrations in the environment. In this study, dispersive liquid-liquid microextraction (DLLME) technique coupled with high performance liquid chromatography-fluorescence detection (HPLC-FD) was optimized for the analysis of selected PAHs, namely phenanthrene (PHE), fluoranthene (FLA) and benzo[a]pyrene (BaP) in apple juice. Under the optimal extraction conditions (the mixture of 200 µL of acetone and 50 µL of 1-octanol was applied to extract the selected PAHs for 1 min), the DLLME-HPLC-FD showed excellent linearity over the concentration range of 5 to 200 µg/L for both PHE and FLA, and 0.01 to 5 µg/L for BaP with correlation coefficients, r ≥ 0.9956. The method offered ultra-trace detection of selected PAHs in the range of 0.002 to 0.5 µg/L, and negligible matrix effects in determining selected PAHs with relative recovery average within the range of 92.6 to 109.6% in apple juice. The advantages of applying this method for the extraction of PAHs include rapidity, simple operation, as well as small consumption of organic extraction solvent, which is beneficial for routine analysis.
    Matched MeSH terms: Liquid Phase Microextraction
  19. Mohd Hassan FW, Muggundha Raoov, Kamaruzaman S, Sanagi MM, Yoshida N, Hirota Y, et al.
    J Sep Sci, 2018 Oct;41(19):3751-3763.
    PMID: 30125466 DOI: 10.1002/jssc.201800326
    This study describes a dispersive liquid-liquid microextraction combined with dispersive solid-phase extraction method based on phenyl-functionalized magnetic sorbent for the preconcentration of polycyclic aromatic hydrocarbons from environmental water, sugarcane juice, and tea samples prior to gas chromatography with mass spectrometry analysis. Several important parameters affecting the extraction efficiency were investigated thoroughly, including the mass of sorbent, type and volume of extraction solvent, extraction time, type of desorption solvent, desorption time, type and amount of salt-induced demulsifier, and sample volume. Under the optimized extraction and gas chromatography-mass spectrometric conditions, the method revealed good linearity (10-100000 ng/L) with coefficient of determination (R2 ) of ≥0.9951, low limits of detection (3-16 ng/L), high enrichment factors (61-239), and satisfactory analyte recoveries (86.3-109.1%) with the relative standard deviations 
    Matched MeSH terms: Liquid Phase Microextraction
  20. Saad SM, Aling NA, Miskam M, Saaid M, Mohamad Zain NN, Kamaruzaman S, et al.
    R Soc Open Sci, 2020 Apr;7(4):200143.
    PMID: 32431904 DOI: 10.1098/rsos.200143
    This work describes the development of a new methodology based on magnetic nanoparticles assisted dispersive liquid-liquid microextraction (DLLME-MNPs) for preconcentration and extraction of chloramphenicol (CAP) antibiotic residues in water. The approach is based on the use of decanoic acid as the extraction solvent followed by the application of MNPs to magnetically retrieve the extraction solvent containing the extracted CAP. The coated MNPs were then desorbed with methanol, and the clean extract was analysed using ultraviolet-visible spectrophotometry. Several important parameters, such as the amount of decanoic acid, extraction time, stirring rate, amount of MNPs, type of desorption solvent, salt addition and sample pH, were evaluated and optimized. Optimum parameters were as follows: amount of decanoic acid: 200 mg; extraction time: 10 min; stirring rate: 800 rpm; amount of MNPs: 60 mg; desorption solvent: methanol; salt: 10%; and sample pH, 8. Under the optimum conditions, the method demonstrated acceptable linearity (R2 = 0.9933) over a concentration range of 50-1000 µg l-1. Limit of detection and limit of quantification were 16.5 and 50.0 µg l-1, respectively. Good analyte recovery (91-92.7%) and acceptable precision with good relative standard deviations (0.45-6.29%, n = 3) were obtained. The method was successfully applied to tap water and lake water samples. The proposed method is rapid, simple, reliable and environmentally friendly for the detection of CAP.
    Matched MeSH terms: Liquid Phase Microextraction
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links