AIMS: This study aimed to examine the influence of vessel volume on bolus thermodilution measurements.
METHODS: We prospectively included patients with angina with non-obstructive coronary arteries (ANOCA) undergoing bolus and continuous thermodilution assessments. All patients underwent coronary CT angiography to extract vessel volume. Coronary microvascular dysfunction was defined as coronary flow reserve (CFR)
METHODS: A 12-week randomized controlled trial in men and women aged 40-70 years was used to test whether skin microcirculation, measured by skin video-capillaroscopy on the dorsum of the finger, influenced functional capillary density (number of capillaries perfused under basal conditions), structural capillary density (number of anatomical capillaries perfused during finger cuff inflation) and capillary recruitment (percentage difference between structural and functional capillary density).
RESULTS: Microvascular measures were available for 137 subjects out of the 165 participants randomized to treatment. There was evidence of compliance to the dietary intervention, and participants randomized to follow dietary guidelines showed significant falls in resting supine systolic, diastolic and mean arterial pressure of 3.5, 2.6 and 2.9 mmHg compared to the control diet. There was no evidence of differences in capillary density, but capillary recruitment was 3.5 % (95 % CI 0.2, 6.9) greater (P = 0.04) on dietary guidelines compared with control.
CONCLUSIONS: Adherence to dietary guidelines may help maintain a healthy microcirculation in middle-aged men and women. This study is registered at www.isrctn.com as ISRCTN92382106.
METHOD: This study was conducted on 19 healthy subjects (non-habitual 8; habitual 11), non-smoking and between 21 and 30 years of age. Using laser speckle flowgraphy (LSFG), three areas of optical nerve head were analyzed which are vessel, tissue, and overall, each with ten pulse waveform parameters, namely mean blur rate (MBR), fluctuation, skew, blowout score (BOS), blowout time (BOT), rising rate, falling rate, flow acceleration index (FAI), acceleration time index (ATI), and resistive index (RI). Two-way mixed ANOVA was used to determine the difference between every two groups where p
OBJECTIVES: This study aims to characterize patients with ANOCA by measuring their minimal microvascular resistance and to examine the pattern of vascular remodeling associated with these measurements.
METHODS: The authors prospectively included patients with ANOCA undergoing continuous thermodilution assessment. Lumen volume and vessel-specific myocardial mass were quantified using coronary computed tomography angiography (CTA). CMD was defined as coronary flow reserve <2.5 and high minimal microvascular resistance as >470 WU.
RESULTS: A total of 153 patients were evaluated; 68 had CMD, and 22 of them showed high microvascular resistance. In patients with CMD, coronary flow reserve was 1.9 ± 0.38 vs 3.2 ± 0.81 in controls (P < 0.001). Lumen volume was significantly correlated with minimal microvascular resistance (r = -0.59 [95% CI: -0.45 to -0.71]; P < 0.001). In patients with CMD and high microvascular resistance, lumen volume was 40% smaller than in controls (512.8 ± 130.3 mm3 vs 853.2 ± 341.2 mm3; P < 0.001). Epicardial lumen volume assessed by coronary CTA was independently associated with minimal microvascular resistance (P < 0.001). The predictive capacity of lumen volume from coronary CTA for detecting high microvascular resistance showed an area under the curve of 0.79 (95% CI: 0.69-0.88).
CONCLUSIONS: Patients with CMD and high minimal microvascular resistance have smaller epicardial vessels than those without CMD. Coronary CTA detected high minimal microvascular resistance with very good diagnostic capacity. Coronary CTA could potentially aid in the diagnostic pathway for patients with ANOCA.
METHODS: This prospective cross-sectional study involved 70 patients with diabetic nephropathy; 40 were categorized into the group with nondeficient serum 25-hydroxyvitamin D levels [25(OH)D >50 nmol/l], whereas 30 patients were categorized to the group with deficient serum 25(OH)D (<50 nmol/l). Microvascular endothelial function was determined using laser Doppler fluximetry and the process of iontophoresis. Acetylcholine and sodium nitroprusside were used to determine endothelium-dependent and independent vasodilatation.
RESULTS: Mean age of patients was 56.7 ± 3.8 years; 50 were men, whereas 20 were women. Mean serum 25(OH)D in the vitamin D-nondeficient group was 69.4 ± 2.9 nmol/l; the level in the vitamin D-deficient group was 42.1 ± 1.3 nmol/l, P < 0.001. Endothelium-dependent vasodilatation was lower in the vitamin D-deficient group compared with the vitamin D-nondeficient group (23.6 ± 2.7 versus 37.3 ± 3.8 arbitrary units, P = 0.004). No significant differences were observed between the two groups in their hsCRP levels, mean age, estimated glomerular filtration rate, systolic blood pressure (SBP) and diastolic blood pressure (DBP) and glycosylated haemoglobin.
CONCLUSION: Microvascular endothelial function was significantly reduced in diabetic nephropathy patients with deficient vitamin D levels compared with those with nondeficient levels.
MATERIALS AND METHODS: We identified differentially expressed mitochondrial proteins in 50 infertile men with varicocele and in 10 fertile controls by secondary liquid chromatography-tandem mass spectroscopy data driven in silico analysis. Identified proteins were validated by Western blot and immunofluorescence. Seminal oxidation-reduction potential was measured.
RESULTS: We identified 22 differentially expressed proteins related to mitochondrial structure (LETM1, EFHC, MIC60, PGAM5, ISOC2 and import TOM22) and function (NDFSU1, UQCRC2 and COX5B, and the core enzymes of carbohydrate and lipid metabolism). Cluster analysis and 3-dimensional principal component analysis revealed a significant difference between the groups. All proteins studied were under expressed in infertile men with varicocele. Liquid chromatography-tandem mass spectroscopy data were corroborated by Western blot and immunofluorescence. Impaired mitochondrial function was associated with decreased expression of the proteins (ATPase1A4, HSPA2, SPA17 and APOA1) responsible for proper sperm function, concomitant with elevated seminal oxidation-reduction potential in the semen of infertile patients with varicocele.
CONCLUSIONS: Impaired mitochondrial structure and function in varicocele may lead to oxidative stress, reduced ATP synthesis and sperm dysfunction. Mitochondrial differentially expressed proteins should be explored for the development of biomarkers as a predictor of infertility in patients with varicocele. Antioxidant therapy targeting sperm mitochondria may help improve the fertility status of these patients.