METHOD: Eight pseudoternary phase triangles, containing ethyl oleate as the oil component and a mixture of two nonionic surfactants and n-alcohol or 1,2-alkanediol as a cosurfactant, were constructed and used for training, testing, and validation purposes. A total of 21 molecular descriptors were calculated for each cosurfactant. A genetic algorithm was used to select important molecular descriptors, and a supervised artificial neural network with two hidden layers was used to correlate selected descriptors and the weight ratio of components in the system with the observed phase behavior.
RESULTS: The results proved the dominant role of the chemical composition, hydrophile-lipophile balance, length of hydrocarbon chain, molecular volume, and hydrocarbon volume of cosurfactant. The best GNN model, with 14 inputs and two hidden layers with 14 and 9 neurons, predicted the phase behavior for a new set of cosurfactants with 82.2% accuracy for ME, 87.5% for LC, 83.3% for the O/W EM, and 91.5% for the W/O EM region.
CONCLUSIONS: This type of methodology can be applied in the evaluation of the cosurfactants for pharmaceutical formulations to minimize experimental effort.
RESULTS: Using two independent gene-prediction pipelines, Fgenesh++ and Seqping, 26,059 oil palm genes with transcriptome and RefSeq support were identified from the oil palm genome. These coding regions of the genome have a characteristic broad distribution of GC3 (fraction of cytosine and guanine in the third position of a codon) with over half the GC3-rich genes (GC3 ≥ 0.75286) being intronless. In comparison, only one-seventh of the oil palm genes identified are intronless. Using comparative genomics analysis, characterization of conserved domains and active sites, and expression analysis, 42 key genes involved in FA biosynthesis in oil palm were identified. For three of them, namely EgFABF, EgFABH and EgFAD3, segmental duplication events were detected. Our analysis also identified 210 candidate resistance genes in six classes, grouped by their protein domain structures.
CONCLUSIONS: We present an accurate and comprehensive annotation of the oil palm genome, focusing on analysis of important categories of genes (GC3-rich and intronless), as well as those associated with important functions, such as FA biosynthesis and disease resistance. The study demonstrated the advantages of having an integrated approach to gene prediction and developed a computational framework for combining multiple genome annotations. These results, available in the oil palm annotation database ( http://palmxplore.mpob.gov.my ), will provide important resources for studies on the genomes of oil palm and related crops.
REVIEWERS: This article was reviewed by Alexander Kel, Igor Rogozin, and Vladimir A. Kuznetsov.