Displaying publications 1 - 20 of 111 in total

Abstract:
Sort:
  1. Bonsu KO, Kadirvelu A, Reidpath DD
    Pharmacol Ther, 2014 Sep;143(3):350.
    PMID: 24769330 DOI: 10.1016/j.pharmthera.2014.04.003
    Matched MeSH terms: Nitric Oxide Synthase/physiology*
  2. Jafri AJA, Agarwal R, Iezhitsa I, Agarwal P, Spasov A, Ozerov A, et al.
    Mol Vis, 2018;24:495-508.
    PMID: 30090013
    Purpose: Retinal nitrosative stress associated with altered expression of nitric oxide synthases (NOS) plays an important role in excitotoxic retinal ganglion cell loss in glaucoma. The present study evaluated the effects of magnesium acetyltaurate (MgAT) on changes induced by N-methyl-D-aspartate (NMDA) in the retinal expression of three NOS isoforms, retinal 3-nitrotyrosine (3-NT) levels, and the extent of retinal cell apoptosis in rats. Effects of MgAT with taurine (TAU) alone were compared to understand the benefits of a combined salt of Mg and TAU.

    Methods: Excitotoxic retinal injury was induced with intravitreal injection of NMDA in Sprague-Dawley rats. All treatments were given as pre-, co-, and post-treatment with NMDA. Seven days post-injection, the retinas were processed for measurement of the expression of NOS isoforms using immunostaining and enzyme-linked immunosorbent assay (ELISA), retinal 3-NT content using ELISA, retinal histopathological changes using hematoxylin and eosin (H&E) staining, and retinal cell apoptosis using terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining.

    Results: As observed on immunohistochemistry, the treatment with NMDA caused a 4.53-fold increase in retinal nNOS expression compared to the PBS-treated rats (p<0.001). Among the MgAT-treated groups, only the pretreatment group showed significantly lower nNOS expression than the NMDA-treated group with a 2.00-fold reduction (p<0.001). Among the TAU-treated groups, the pre- and cotreatment groups showed 1.84- and 1.71-fold reduction in nNOS expression compared to the NMDA-treated group (p<0.001), respectively, but remained higher compared to the PBS-treated group (p<0.01). Similarly, iNOS expression in the NMDA-treated group was significantly greater than that for the PBS-treated group (2.68-fold; p<0.001). All MgAT treatment groups showed significantly lower iNOS expression than the NMDA-treated groups (3.58-, 1.51-, and 1.65-folds, respectively). However, in the MgAT co- and post-treatment groups, iNOS expression was significantly greater than in the PBS-treated group (1.77- and 1.62-folds, respectively). Pretreatment with MgAT caused 1.77-fold lower iNOS expression compared to pretreatment with TAU (p<0.05). In contrast, eNOS expression was 1.63-fold higher in the PBS-treated group than in the NMDA-treated group (p<0.001). Among all treatment groups, only pretreatment with MgAT caused restoration of retinal eNOS expression with a 1.39-fold difference from the NMDA-treated group (p<0.05). eNOS expression in the MgAT pretreatment group was also 1.34-fold higher than in the TAU pretreatment group (p<0.05). The retinal NOS expression as measured with ELISA was in accordance with that estimated with immunohistochemistry. Accordingly, among the MgAT treatment groups, only the pretreated group showed 1.47-fold lower retinal 3-NT than the NMDA-treated group, and the difference was significant (p<0.001). The H&E-stained retinal sections in all treatment groups showed statistically significantly greater numbers of retinal cell nuclei than the NMDA-treated group in the inner retina. However, the ganglion cell layer thickness in the TAU pretreatment group remained 1.23-fold lower than that in the MgAT pretreatment group (p<0.05). In line with this observation, the number of apoptotic cells as observed after TUNEL staining was 1.69-fold higher after pretreatment with TAU compared to pretreatment with MgAT (p<0.01).

    Conclusions: MgAT and TAU, particularly with pretreatment, reduce retinal cell apoptosis by reducing retinal nitrosative stress. Pretreatment with MgAT caused greater improvement in NMDA-induced changes in iNOS and eNOS expression and retinal 3-NT levels than pretreatment with TAU. The greater reduction in retinal nitrosative stress after pretreatment with MgAT was associated with lower retinal cell apoptosis and greater preservation of the ganglion cell layer thickness compared to pretreatment with TAU.

    Matched MeSH terms: Nitric Oxide Synthase Type II/genetics; Nitric Oxide Synthase Type II/metabolism; Nitric Oxide Synthase Type I/genetics; Nitric Oxide Synthase Type I/metabolism; Nitric Oxide Synthase Type III/genetics; Nitric Oxide Synthase Type III/metabolism
  3. Gopinath VK, Musa M, Samsudin AR, Lalitha P, Sosroseno W
    Arch Oral Biol, 2006 Apr;51(4):339-44.
    PMID: 16214104
    The aim of this study was to determine the role of nitric oxide (NO) in hydroxyapatite (HA)-induced phagocytosis by a murine macrophage cell line (RAW264.7). The cells were incubated with HA particles at various incubation time and phagocytosis was assessed using phagocytic index (PI). NO production from the culture supernatants was determined by the Griess reagent. The inducible nitric oxide synthase (iNOS) expression was determined by Western blot. The particles were also incubated with cells pretreated with various concentrations of L-N(6)-(1-iminoethyl) lysine hydrochloride (L-NIL) or L-arginine. Latex beads were used as a control. Our results showed that macrophage phagocytosis induced by HA was higher than that induced by the beads. However, NO production by HA-stimulated cells was lower than that by bead-stimulated cells. iNOS expression in both bead- and HA-stimulated cells was observed expressed at 7, 15, 30, and 60 min. l-Arginine enhanced but l-NIL inhibited both phagocytosis and NO production by HA-stimulated cells. The results of the present study suggest that nitric oxide may play a crucial role in HA-induced phagocytosis by RAW264.7 cells.
    Matched MeSH terms: Nitric Oxide Synthase/antagonists & inhibitors; Nitric Oxide Synthase Type II/analysis; Nitric Oxide Synthase Type II/antagonists & inhibitors
  4. Sosroseno W, Sugiatno E, Samsudin AR, Ibrahim F
    J Oral Implantol, 2008;34(4):196-202.
    PMID: 18780564 DOI: 10.1563/0.910.1
    The aim of the present study was to test the hypothesis that the proliferation of a human osteoblast cell line (HOS cells) stimulated with hydroxyapatite (HA) may be regulated by nitric oxide (NO). The cells were cultured on the surface of HA. Medium or cells alone were used as controls. L-arginine, D-arginine, 7-NI (an nNOS inhibitor), L-NIL (an iNOS inhibitor), L-NIO (an eNOS inhibitor) or carboxy PTIO, a NO scavenger, was added in the HA-exposed cell cultures. The cells were also precoated with anti-human integrin alphaV antibody. The levels of nitrite were determined spectrophotometrically. Cell proliferation was assessed by colorimetric assay. The results showed increased nitrite production and cell proliferation by HA-stimulated HOS cells up to day 3 of cultures. Anti-integrin alphaV antibody, L-NIO, or carboxy PTIO suppressed, but L-arginine enhanced, nitrite production and cell proliferation of HA-stimulated HOS cells. The results of the present study suggest, therefore, that interaction between HA and HOS cell surface integrin alphaV molecule may activate eNOS to catalyze NO production which, in turn, may regulate the cell proliferation in an autocrine fashion.
    Matched MeSH terms: Nitric Oxide Synthase/antagonists & inhibitors; Nitric Oxide Synthase Type II/antagonists & inhibitors; Nitric Oxide Synthase Type III/antagonists & inhibitors
  5. Newaz MA, Nawal NN, Rohaizan CH, Muslim N, Gapor A
    Am J Hypertens, 1999 Aug;12(8 Pt 1):839-44.
    PMID: 10480480
    Antioxidant protection provided by different doses of alpha-tocopherol was compared by determining nitric oxide synthase (NOS) activity in blood vessels of spontaneously hypertensive rats (SHR) treated with alpha-tocopherol. SHR were divided into four groups namely hypertensive control (C), treatment with 17 mg of alpha-tocopherol/kg diet (alpha1), 34 mg of alpha-tocopherol/kg diet (alpha2), and 170 mg of alpha-tocopherol/kg diet (alpha3). Wister Kyoto (WKY) rats were used as normal control (N). Blood pressure were recorded from the tail by physiography every other night for the duration of the study period of 3 months. At the end of the trial, animals were sacrificed. The NOS activity in blood vessels was measured by [3H]arginine radioactive assay and the nitrite concentration in plasma by spectrophotometry at wavelength 554 nm using Greiss reagent. Analysis of data was done using Student's t test and Pearson's correlation. The computer program Statistica was used for all analysis. Results of our study showed that for all the three alpha-tocopherol-treated groups, blood pressure was significantly (P < .001) reduced compared to the hypertensive control and maximum reduction of blood pressure was shown by the dosage of 34 mg of alpha-tocopherol/kg diet (C: 209.56 +/- 8.47 mm Hg; alpha2: 128.83 +/- 17.13 mm Hg). Also, NOS activity in blood vessels of SHR was significantly lower than WKY rats (N: 1.54 +/- 0.26 pmol/mg protein, C: 0.87 +/- 0.23 pmol/mg protein; P < .001). Although alpha-tocopherol in doses of alpha1, alpha2, and alpha3 increased the NOS activity in blood vessels, after treatment only that of alpha2 showed a statistical significance (P < .01). Plasma nitrite concentration was significantly reduced in SHR compared to normal WKY rats (N: 54.62 +/- 2.96 mol/mL, C: 26.24 +/- 2.14 mol/mL; P < .001) and accordingly all three groups showed significant improvement in their respective nitrite level (P < .001). For all groups, NOS activity and nitrite level showed negative correlation with blood pressure. It was significant for NOS activity in hypertensive control (r = -0.735, P = .038), alpha1 (r = -0.833, P = .001), and alpha2 (r = -0.899, P = .000) groups. For plasma nitrite, significant correlation was observed only in group alpha1 (r = -0.673, P = .016) and alpha2 (r = -0.643, P = .024). Only the alpha2 group showed significant positive correlation (r = 0.777, P = .003) between NOS activity and nitrite level. In conclusion it was found that compared to WKY rats, SHR have lower NOS activity in blood vessels, which upon treatment with antioxidant alpha-tocopherol increased the NOS activity and concomitantly reduced the blood pressure. There was correlation of lipid peroxide in blood vessels with NOS and nitric oxide, which implies that free radicals may be involved in the pathogenesis of hypertension.
    Matched MeSH terms: Nitric Oxide Synthase/metabolism*; Nitric Oxide Synthase Type III
  6. Nor Arfuzir NN, Agarwal R, Iezhitsa I, Agarwal P, Sidek S, Spasov A, et al.
    Curr Eye Res, 2018 08;43(8):1032-1040.
    PMID: 29676937 DOI: 10.1080/02713683.2018.1467933
    PURPOSE: Retinal ganglion cell apoptosis in glaucoma is associated with elevated levels of endothelin-1 (ET1), a potent vasoconstrictor. ET1-induced retinal ischemia leads to altered expression of nitric oxide synthase (NOS) isoforms leading to increased formation of nitric oxide (NO) and retinal nitrosative stress. Since magnesium (Mg) is known to improve endothelial functions and reduce oxidative stress and taurine (TAU) possesses potent antioxidant properties, we investigated the protective effects of magnesium acetyltaurate (MgAT) against ET1-induced nitrosative stress and retinal damage in rats. We also compared the effects of MgAT with that of TAU alone.

    METHODS: Sprague Dawley rats were intravitreally injected with ET1. MgAT and TAU were administered as pre-, co-, or posttreatment. Subsequently, the expression of NOS isoforms was detected in retina by immunohistochemistry, retinal nitrotyrosine level was estimated using ELISA, and retinal cell apoptosis was detected by TUNEL staining.

    RESULTS: Intravitreal ET1 caused a significant increase in the expressions of nNOS and iNOS while eNOS expression was significantly reduced compared to vehicle treated group. Administration of both MgAT and TAU restored the altered levels of NOS isoform expression, reduced retinal nitrosative stress and retinal cell apoptosis. The effect of MgAT, however, was greater than that of TAU alone.

    CONCLUSIONS: MgAT and TAU prevent ET1-induced retinal cell apoptosis by reducing retinal nitrosative stress in Sprague Dawley rats. Addition of TAU to Mg seems to enhance the efficacy of TAU compared to when given alone. Moreover, the pretreatment with MgAT/TAU showed higher efficacy compared to co- or posttreatment.

    Matched MeSH terms: Nitric Oxide Synthase Type II/biosynthesis; Nitric Oxide Synthase Type I/biosynthesis
  7. Ugusman A, Zakaria Z, Chua KH, Nordin NA, Abdullah Mahdy Z
    ScientificWorldJournal, 2014;2014:169370.
    PMID: 25093198 DOI: 10.1155/2014/169370
    Nitric oxide (NO), produced by endothelial nitric oxide synthase (eNOS), is a major antiatherogenic factor in the blood vessel. Oxidative stress plays an important role in the pathogenesis of various cardiovascular diseases, including atherosclerosis. Decreased availability of endothelial NO promotes the progression of endothelial dysfunction and atherosclerosis. Rutin is a flavonoid with multiple cardiovascular protective effects. This study aimed to investigate the effects of rutin on eNOS and NO production in cultured human umbilical vein endothelial cells (HUVEC). HUVEC were divided into four groups: control; oxidative stress induction with 180 μM H₂O₂; treatment with 300 μM rutin; and concomitant induction with rutin and H₂O₂ for 24 hours. HUVEC treated with rutin produced higher amount of NO compared to control (P < 0.01). In the oxidative stress-induced HUVEC, rutin successfully induced cells' NO production (P < 0.01). Rutin promoted NO production in HUVEC by inducing eNOS gene expression (P < 0.05), eNOS protein synthesis (P < 0.01), and eNOS activity (P < 0.05). Treatment with rutin also led to increased gene and protein expression of basic fibroblast growth factor (bFGF) in HUVEC. Therefore, upregulation of eNOS expression by rutin may be mediated by bFGF. The results showed that rutin may improve endothelial function by augmenting NO production in human endothelial cells.
    Matched MeSH terms: Nitric Oxide Synthase Type III/metabolism
  8. Gan YY, Chen CF
    Biochem Genet, 2012 Feb;50(1-2):52-62.
    PMID: 21927815 DOI: 10.1007/s10528-011-9458-0
    Human endothelial nitric oxide synthase (eNOS) is one isoform of the nitric oxide synthases that are responsible for nitric oxide synthesis from L-arginine. The gene encoding eNOS contains a 27-bp VNTR polymorphism in intron 4. We report here for the first time the presence of a novel allele 3, which was absent in all other populations studied to date, in 1.7% each of Singaporean Indians and Malays. We also detected the presence of a novel genotype 3/5 in 3.4% each of Singaporean Indians and Malays. Allele 6, which was absent in Han Chinese from northern China and Taiwan and was also absent in Indians from the Indian subcontinent, was found in 2.1% of Singaporean Chinese and in 0.3% of Singaporean Indians.
    Matched MeSH terms: Nitric Oxide Synthase Type III/genetics*
  9. Hong YH, Yang C, Betik AC, Lee-Young RS, McConell GK
    Am J Physiol Endocrinol Metab, 2016 05 15;310(10):E838-45.
    PMID: 27006199 DOI: 10.1152/ajpendo.00513.2015
    Nitric oxide influences intramuscular signaling that affects skeletal muscle glucose uptake during exercise. The role of the main NO-producing enzyme isoform activated during skeletal muscle contraction, neuronal nitric oxide synthase-μ (nNOSμ), in modulating glucose uptake has not been investigated in a physiological exercise model. In this study, conscious and unrestrained chronically catheterized nNOSμ(+/+) and nNOSμ(-/-) mice either remained at rest or ran on a treadmill at 17 m/min for 30 min. Both groups of mice demonstrated similar exercise capacity during a maximal exercise test to exhaustion (17.7 ± 0.6 vs. 15.9 ± 0.9 min for nNOSμ(+/+) and nNOSμ(-/-), respectively, P > 0.05). Resting and exercise blood glucose levels were comparable between the genotypes. Very low levels of NOS activity were detected in skeletal muscle from nNOSμ(-/-) mice, and exercise increased NOS activity only in nNOSμ(+/+) mice (4.4 ± 0.3 to 5.2 ± 0.4 pmol·mg(-1)·min(-1), P < 0.05). Exercise significantly increased glucose uptake in gastrocnemius muscle (5- to 7-fold) and, surprisingly, more so in nNOSμ(-/-) than in nNOSμ(+/+) mice (P < 0.05). This is in parallel with a greater increase in AMPK phosphorylation during exercise in nNOSμ(-/-) mice. In conclusion, nNOSμ is not essential for skeletal muscle glucose uptake during exercise, and the higher skeletal muscle glucose uptake during exercise in nNOSμ(-/-) mice may be due to compensatory increases in AMPK activation.
    Matched MeSH terms: Nitric Oxide Synthase Type I/genetics*
  10. Azemi AK, Mokhtar SS, Hou LJ, Sharif SET, Rasool AHG
    Biotech Histochem, 2021 Oct;96(7):498-506.
    PMID: 32957845 DOI: 10.1080/10520295.2020.1823480
    We used a type 2 diabetes rat model produced by a high fat diet (HFD) followed by low dose streptozotocin (STZ) to study diabetic vasculopathy. Animals were evaluated for early vascular structural changes, endothelial function, inflammation, lipid profile and oxidative stress. We used 20 male Sprague-Dawley rats divided equally into control and diabetic groups. Diabetic rats were fed an HFD for 4 weeks, injected intraperitoneally with STZ, then sacrificed at week 15. Aortic endothelial nitric oxide synthase (eNOS), aortic superoxide dismutase (SOD), endothelial-dependent and independent relaxation and contraction, intima-media thickness (IMT), malondialdehyde (MDA) and tumor necrosis factor-alpha (TNF-α) were measured. Histopathological characteristics also were assessed. Diabetic rats exhibited higher fasting blood glucose (FBG), low density lipoprotein, total cholesterol and triglycerides compared to the control group. Aortic endothelium-dependent relaxation due to acetylcholine (ACh) was lower, while aortic endothelium-dependent contraction due to calcium ionophore and endothelium-independent contraction due to phenylephrine (PE) were higher for the diabetic group. eNOS expression was lower in the diabetic group compared to controls. IMT and MDA levels were increased, while SOD activity was decreased in the diabetic group compared to controls. TNF-α was higher in the diabetic group than for controls. Our type 2 diabetes model exhibited endothelial dysfunction associated with early vascular structural changes, dyslipidemia, increased vascular oxidative stress, and inflammation. Therefore, the model is suitable for studying diabetic atherosclerosis.
    Matched MeSH terms: Nitric Oxide Synthase Type III/metabolism
  11. Loo KW, Griffiths LR, Gan SH
    BMC Med Genet, 2012 May 17;13:34.
    PMID: 22594584 DOI: 10.1186/1471-2350-13-34
    BACKGROUND: Hyperhomocysteinemia as a consequence of the MTHFR 677 C > T variant is associated with cardiovascular disease and stroke. Another factor that can potentially contribute to these disorders is a depleted nitric oxide level, which can be due to the presence of eNOS +894 G > T and eNOS -786 T > C variants that make an individual more susceptible to endothelial dysfunction. A number of genotyping methods have been developed to investigate these variants. However, simultaneous detection methods using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis are still lacking. In this study, a novel multiplex PCR-RFLP method for the simultaneous detection of MTHFR 677 C > T and eNOS +894 G > T and eNOS -786 T > C variants was developed. A total of 114 healthy Malay subjects were recruited. The MTHFR 677 C > T and eNOS +894 G > T and eNOS -786 T > C variants were genotyped using the novel multiplex PCR-RFLP and confirmed by DNA sequencing as well as snpBLAST. Allele frequencies of MTHFR 677 C > T and eNOS +894 G > T and eNOS -786 T > C were calculated using the Hardy Weinberg equation.

    METHODS: The 114 healthy volunteers were recruited for this study, and their DNA was extracted. Primer pair was designed using Primer 3 Software version 0.4.0 and validated against the BLAST database. The primer specificity, functionality and annealing temperature were tested using uniplex PCR methods that were later combined into a single multiplex PCR. Restriction Fragment Length Polymorphism (RFLP) was performed in three separate tubes followed by agarose gel electrophoresis. PCR product residual was purified and sent for DNA sequencing.

    RESULTS: The allele frequencies for MTHFR 677 C > T were 0.89 (C allele) and 0.11 (T allele); for eNOS +894 G > T, the allele frequencies were 0.58 (G allele) and 0.43 (T allele); and for eNOS -786 T > C, the allele frequencies were 0.87 (T allele) and 0.13 (C allele).

    CONCLUSIONS: Our PCR-RFLP method is a simple, cost-effective and time-saving method. It can be used to successfully genotype subjects for the MTHFR 677 C > T and eNOS +894 G > T and eNOS -786 T > C variants simultaneously with 100% concordance from DNA sequencing data. This method can be routinely used for rapid investigation of the MTHFR 677 C > T and eNOS +894 G > T and eNOS -786 T > C variants.

    Matched MeSH terms: Nitric Oxide Synthase Type III/genetics*
  12. Deguchi J, Shoji T, Nugroho AE, Hirasawa Y, Hosoya T, Shirota O, et al.
    J Nat Prod, 2010 Oct 22;73(10):1727-9.
    PMID: 20836516 DOI: 10.1021/np100458b
    Eucophylline (1), a new tetracyclic vinylquinoline alkaloid, was isolated from the bark of Leuconotis eugenifolius together with leucophyllidine (2). The structure and absolute configuration of 1 were elucidated on the basis of 2D NMR correlations and simulated CD analysis. Leucophyllidine (2) showed iNOS inhibitory activity and decreased the iNOS protein expression dose-dependently.
    Matched MeSH terms: Nitric Oxide Synthase Type II/drug effects; Nitric Oxide Synthase Type II/metabolism
  13. Sosroseno W, Musa M, Ravichandran M, Ibrahim MF, Bird PS, Seymour GJ
    Eur J Oral Sci, 2008 Feb;116(1):31-6.
    PMID: 18186729 DOI: 10.1111/j.1600-0722.2007.00501.x
    Animal studies suggest that inducible nitric oxide synthase (iNOS) may be associated with destructive periodontal disease. l-N(6)-(1-Iminoethyl)-lysine (L-NIL) has been shown to inhibit iNOS in a selective manner, and hence the aim of the present study was to test the hypothesis that treatment with l-NIL may induce a T-cell helper 1 (Th1)-like immune response by Aggregatibacter (Actinobacillus) actinomycetemcomitans lipopolysaccharide (LPS)-stimulated murine spleen cells in vitro. BALB/c mice were either sham-immunized or immunized with A. actinomycetemcomitans LPS. Spleen cells were stimulated with A. actinomycetemcomitans LPS in the presence or absence of L-NIL. Nitric oxide (NO), iNOS activity, specific IgG subclass antibodies, interferon-gamma (IFN-gamma), and interleukin-4 (IL-4) levels and cell proliferation were determined. The results showed that treatment with L-NIL suppressed both NO production and iNOS activity but enhanced specific IgG2a, IFN-gamma levels, and increased cell proliferation following stimulation with A. actinomycetemcomitans LPS-stimulated cells. The results of the present study suggest that inhibition of iNOS activity by L-NIL may skew the A. actinomycetemcomitans LPS-stimulated murine splenic immune response towards the Th1-like immune profile in vitro.
    Matched MeSH terms: Nitric Oxide Synthase Type II/analysis; Nitric Oxide Synthase Type II/antagonists & inhibitors*
  14. Israf DA, Khaizurin TA, Syahida A, Lajis NH, Khozirah S
    Mol Immunol, 2007 Feb;44(5):673-9.
    PMID: 16777230
    Cardamonin, a chalcone isolated from the fruits of a local plant Alpinia rafflesiana, has demonstrated anti-inflammatory activity in cellular models of inflammation. In this report, we evaluated the ability of cardamonin to suppress both NO and PGE2 synthesis, iNOS and COX-2 expression and enzymatic activity, and key molecules in the NF-kappaB pathway in order to determine its molecular target. Cardamonin suppressed the production of NO and PGE2 in interferon-gamma (IFN-gamma)- and lipopolysaccharide (LPS)-induced RAW 264.7 cells. This inhibition was demonstrated to be caused by a dose-dependent down-regulation of both inducible enzymes, iNOS and COX-2, without direct effect upon iNOS or COX-2 enzyme activity. Subsequently we determined that the inhibition of inducible enzyme expression was due to a dose-dependent inhibition of phosphorylation and degradation of I-kappaBalpha, which resulted in a reduction of p65NF-kappaB nuclear translocation. We conclude that cardamonin is a potential anti-inflammatory drug lead that targets the NF-kappaB pathway.
    Matched MeSH terms: Nitric Oxide Synthase Type II/antagonists & inhibitors*; Nitric Oxide Synthase Type II/metabolism
  15. Baskaran A, Chua KH, Sabaratnam V, Ravishankar Ram M, Kuppusamy UR
    BMC Complement Altern Med, 2017 Jan 13;17(1):40.
    PMID: 28086773 DOI: 10.1186/s12906-016-1546-6
    Pleurotus giganteus (Berk. Karunarathna and K.D. Hyde), has been used as a culinary mushroom and is known to have medicinal properties but its potential as an anti-inflammatory agent to mitigate inflammation triggered diseases is untapped. In this study, the molecular mechanism underlying the protective effect of ethanol extract of P. giganteus (EPG) against lipopolysaccharide (LPS) and combination of LPS and hydrogen peroxide (H2O2)-induced inflammation on RAW 264.7 macrophages was investigated.
    Matched MeSH terms: Nitric Oxide Synthase Type II/genetics; Nitric Oxide Synthase Type II/metabolism
  16. Lee CY
    Obes Res Clin Pract, 2012 Jan-Mar;6(1):e1-e90.
    PMID: 24331176 DOI: 10.1016/j.orcp.2011.05.002
    Quercetin and adenosine are natural antioxidants separately claimed to improve metabolic syndrome parameters. The effect of this combination (QA) was examined in high fat diet-fed mice. Results showed that growth and blood parameters, as observed for quercetin-treated mice, were not significantly different from the control. Adenosine alone caused hyperglycemia and reduced plasma adiponectin. QA feeding led to increased adiposity and circulatory insulin, and concomitantly down-regulated liver eNOS and LFABP expressions. This showed that interaction occurred between quercetin and adenosine, and combined ingestion may lead to insulin resistance, while adenosine does not prevent the development of metabolic syndrome.:
    Matched MeSH terms: Nitric Oxide Synthase Type III
  17. Sosroseno W, Bird PS, Seymour GJ
    Anaerobe, 2011 Oct;17(5):246-51.
    PMID: 21736946 DOI: 10.1016/j.anaerobe.2011.06.006
    Nitric oxide (NO) may play a crucial role in the pathogenesis of periodontal disease and, hence, the aim of the present study was to test the hypothesis that Aggregatibacter actinomycetemcomitans surface-associated material (SAM) stimulates inducible nitric oxide synthase (iNOS) activity and NO production by the murine macrophage cell line RAW264.7. Cells were stimulated with untreated or heat-treated A. actinomycetemcomitans SAM and with or without pre-treatment with L-N(6)-(1-Iminoethyl)-lysine (L-NIL) (an iNOS inhibitor), polymyxin B, interferon-gamma (IFN-γ) and Interleukin-4 (IL-4), IL-10, genistein [a protein tyrosine kinase (PTK) inhibitor], bisindolylmaleimide [a protein kinase C (PKC) inhibitor], bromophenacyl bromide (BPB) [a phospholipase A(2) (PLA2) inhibitor] or wortmannin [phosphatidylinositol 3-kinase (PI-3K) inhibitor]. The iNOS activity and nitrite production in the cell cultures were determined. Untreated but not heat-treated A. actinomycetemcomitans SAM-stimulated both iNOS activity and nitrite production in RAW264.7 cells. L-NIL, IL-4, IL-10, genistein, bisindolylmaleimide, or BPB, suppressed but IFN-γ enhanced both iNOS activity and nitrite production by A. actinomycetemcomitans SAM-stimulated cells. Wortmannin and polymyxin B failed to alter both iNOS activity or nitrite production by A. actinomycetemcomitans SAM treated cells. Therefore, the present study suggests that a heat-sensitive protein constituent(s) of A. actinomycetemcomitans SAM stimulates both iNOS activity and nitrite production by RAW264.7 cells in a cytokine, PTK, PKC, and PLA(2) but not PI-3K-dependent fashion.
    Matched MeSH terms: Nitric Oxide Synthase Type II/antagonists & inhibitors; Nitric Oxide Synthase Type II/immunology; Nitric Oxide Synthase Type II/metabolism
  18. Hong SK, Gul YA, Ithnin H, Talib A, Seow HF
    Asian J Surg, 2004 Jan;27(1):10-7.
    PMID: 14719508
    BACKGROUND: Promising new pharmacological agents and gene therapy targeting cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) could modulate treatment of colorectal cancer in the future. The aim of this study was to elucidate the expression fo beta-catenin and teh presence of COX-2 and iNOS in colorectal cancer specimens in Malaysia. This is a useful prelude to future studies investigating interventions directed towards COX-2 adn iNOS.

    METHODS: A cross-section study using retrospective data over a 2-year period (1999-2000) involved 101 archival, formalin-fixed, paraffin-embedded tissue samples of colorectal cancers that were surgically resected in a tertiary referral.

    RESULTS: COX-2 production was detected in adjacent normal tissue in 34 sample (33.7%) and in tumour tissue in 60 samples (59.4%). More tumours expressed iNOS (82/101, 81.2%) than COX-2. No iNOS expression was detected in adjacent normal tissue. Intense beta-catenin immunoreactivity at the cell-to-cell border. Poorly differentiated tumours had significantly lower total beta-catenin (p = 0.009) and COX-2 scores (p = 0.031). No significant relationships were established between pathological stage and beta-catenin, COX-2 and iNOS scores.

    CONCLUSIONS: the accumulation of beta-catenin does not seem to be sufficient to activate pathways that lead to increased COX-2 and iNOS expression. A high proportion of colorectal cancers were found to express COX-2 and a significant number produced iNOS, suggesting that their inhibitors may be potentially useful as chemotherapeutic agents in the management of colorectal cancer.

    Matched MeSH terms: Nitric Oxide Synthase/antagonists & inhibitors; Nitric Oxide Synthase/metabolism*; Nitric Oxide Synthase Type II
  19. Ismail EN, Jantan I, Vidyadaran S, Jamal JA, Azmi N
    BMC Complement Med Ther, 2020 Jul 01;20(1):202.
    PMID: 32611404 DOI: 10.1186/s12906-020-02961-0
    BACKGROUND: Phyllanthus amarus has been shown to attenuate lipopolysaccharide (LPS)-induced peripheral inflammation but similar studies in the central nervous system are scarce. The aim of the present study was to investigate the neuroprotective effects of 80% ethanol extract of P. amarus (EPA) in LPS-activated BV2 microglial cells.

    METHODS: BV2 microglial cells c for 24 h, pre-treated with EPA for 24 h prior to LPS induction for another 24 h. Surface expression of CD11b and CD40 on BV2 cells was analyzed by flow cytometry. ELISA was employed to measure the production of pro-inflammatory mediators i.e. nitric oxide (NO) and tumor necrosis factor (TNF)-α. Western blotting technique was used to determine the expression of inducible nitric oxide synthase (iNOS), myeloid differentiation protein 88 (MYD88), nuclear factor kappa B (NF-κB), caspase-1, and mitogen activated protein kinase (MAPK).

    RESULTS: Qualitative and quantitative analyses of the EPA using a validated ultra-high pressure liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method indicated the presence of phyllanthin, hypophyllanthin, niranthin, ellagic acid, corilagin, gallic acid, phyltetralin, isolintetralin and geraniin. EPA suppressed the production of NO and TNFα in LPS-activated BV2 microglial cells. Moreover, EPA attenuated the expression of MyD88, NF-κB and MAPK (p-P38, p-JNK and p-ERK1/2). It also inhibited the expression of CD11b and CD40. EPA protected against LPS-induced microglial activation via MyD88 and NF-κB signaling in BV2 microglial cells.

    CONCLUSIONS: EPA demonstrated neuroprotective effects against LPS-induced microglial cells activation through the inhibition of TNFα secretion, iNOS protein expression and subsequent NO production, inhibition of NF-κB and MAPKs mediated by adapter protein MyD88 and inhibition of microglial activation markers CD11b and CD40.

    Matched MeSH terms: Nitric Oxide Synthase Type II
  20. Liew JWK, Fong MY, Lau YL
    PeerJ, 2017;5:e3577.
    PMID: 28761783 DOI: 10.7717/peerj.3577
    Quantitative reverse transcription PCR (qRT-PCR) has been an integral part of characterizing the immunity of Anopheles mosquitoes towards Plasmodium invasion. Two anti-Plasmodium factors of Anopheles, thioester-containing protein 1 (TEP1) and nitric oxide synthase (NOS), play a role in the refractoriness of Anopheles towards Plasmodium infection and are generally expressed during infection. However, these are less studied in Anopheles dirus, a dominant malaria vector in Southeast Asia. Furthermore, most studies used a single reference gene for normalization during gene expression analysis without proper validation. This may lead to erroneous quantification of expression levels. Therefore, the present study characterized and investigated the expression profiles of TEP1 and NOS of Anopheles dirus during P. berghei infection. Prior to that, the elongation factor 1-alpha (EF1), actin 1 (Act) and ribosomal protein S7 (S7) genes were validated for their suitability as a set of reference genes. TEP1 and NOS expressions in An. dirus were found to be significantly induced after P. berghei infection.
    Matched MeSH terms: Nitric Oxide Synthase
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links