The sustainability of nitrile glove production process is essential both in the financial and energy perspective. Nitrile glove has the lowest material cost with positive mechanical and chemical performance quality for the disposable glove market. Nitrile glove also holds a major market in disposable gloves sector, and nitrile rubber compounds may contribute to the huge reduction of the capital cost for a pair of surgical gloves due to the inexpensive raw material compares with other synthetic polyisoprene or neoprene. Hence, blending of bio-additive into the nitrile latex might support the 3 pillars of sustainability for environmental, societal, and financial sector. Bio-additives helps increase the degradation rate of gloves under natural conditions. Bio-based substances could be derived from food waste, natural plants, and aquatic plants like micro- and macro algae. Furthermore, antimicrobial agent (e.g. brilliant green and cyclohexadiene) is the trend in surgical glove for coated as protecting layer, due to the capability to remove pathogens or bacterial on the surgeon hands during operation period. Besides, the section in energy recovery is a proposing gateway for reducing the financial cost and makes the process sustainable.
In the title salt, C14H18N2(2+) · 2C9H5N4O(-), the 1,1'-diethyl-4,4'-bipyridine-1,1'-diium dication lies across a centre of inversion in the space group P21/c. In the 1,1,3,3-tetracyano-2-ethoxypropenide anion, the two independent -C(CN)2 units are rotated, in conrotatory fashion, out of the plane of the central propenide unit, making dihedral angles with the central unit of 16.0(2) and 23.0(2)°. The ionic components are linked by C-H...N hydrogen bonds to form a complex sheet structure, within which each cation acts as a sixfold donor of hydrogen bonds and each anion acts as a threefold acceptor of hydrogen bonds.
The sorption and desorption of cyfluthrin mixture isomers were determined using batch equilibration method and mobility was studied under laboratory conditions, using packed soil column. The soil types used in the study were clayey, clay loam and sandy clay loam obtained from three tomato farms in Cameron Highlands. A low Freundlich adsorption distribution coefficient K(ads(f)) for cyfluthrin was observed for clayey, clay loam and sandy clay loam soils (95.69, 21.64 and 8.99 l/kg, respectively). Results showed that cyfluthrin had high Freundlich organic matter (OM) distribution coefficient K(oc) values of 5799, 2278 and 1635 lkg(-1) for clayey, clay loam and sandy clay loam soils, respectively. These values indicate that cyfluthrin is considered immobile in Malaysian soils with different textures, based on the value of K(oc) by McCall. Adsorption of cyfluthrin was significantly (P < 0.05) affected with soil pH, fertilizer NPK, organic matter content and temperature. It was observed that approximately 95.8%, 93.8% and 91.8% of the adsorbed cyfluthrin remained sorbed after four successive rinses for clayey, clay loam and sandy clay loam soils. Soil column test showed that cyfluthrin was not detected in leachate. Cyfluthrin was detected in topsoil and its concentration decreased with depth. The downward movement of cyfluthrin in sandy clay loam soil was more than that in clay loam and clayey soils. Approximately, 80.9%, 77.8% and 67.3% cyfluthrin was observed at the depth of 0-5 cm (rainfall 350 mm) for clayey, clay loam and sandy clay loam soils respectively. Mobility of cyfluthrin showed that the percentage of cyfluthrin leached into soil was not affected by the amount of rainfall. The result clearly showed that cyfluthrin molecules were bound strongly to all the three Malaysian soil types.
Employing the Molecular Electron Density Theory, [3 + 2] cycloaddition processes between 4-chlorobenzenenitrileoxide and linalool, have been applied using the DFT/B3LYP/6-311(d,p) method, activation, reaction energies and the reactivity indices are calculated. In an investigation of conceptual DFT indices, LIL-1 will contribute to this reaction as a nucleophile, whilst NOX-2 will participate as an electrophile. This cyclization is regio, chemo and stereospecific, as demonstrated by the reaction and activation energies, in clear agreement with the experiment's results, in addition, ELF analysis revealed that the mechanism for this cycloaddition occurs in two steps. Furthermore, a docking study was conducted on the products studied, and the interaction with the protein protease COVID-19 (PDB ID: 6LU7), our results indicate that the presence of the -OH group increases the affinity of these products, moreover, adsorption study by chromatography was made on silica gel as support; our outcome reveals that the -OH group creates an intramolecular hydrogen bond in the product P2, while in the product P3 will create a hydrogen bond with the silica gel which makes the two products P2 and P3 are very easy to separate by chromatography, this result is in excellent agreement with the Rf retention value. The study might provide a fundamental for developing natural anti-viral compound in promoting human health.
Pesticides are the leading defence against pests, but their unsafe use reciprocates the pesticide residues in highly susceptible food and is becoming a serious risk for human health. In this study, mint extract and riboflavin were tested as photosensitisers in combination with light irradiation of different frequencies, employed for various time intervals to improve the photo-degradation of deltamethrin (DM) and lambda cyhalothrin (λ-CHT) in cauliflower. Different source of light was studied, either in ultraviolet range (UV-C, 254 nm or UV-A, 320-380 nm) or sunlight simulator (> 380-800 nm). The degradation of the pesticides varied depending on the type of photosensitiser and light source. Photo-degradation of the DM and λ-CHT was enhanced by applying the mint extracts and riboflavin and a more significant degradation was achieved with UV-C than with either UV-A or sunlight, reaching a maximum decrement of the concentration by 67-76%. The light treatments did not significantly affect the in-vitro antioxidant activity of the natural antioxidants in cauliflower. A calculated dietary risk assessment revealed that obvious dietary health hazards of DM and λ-CHT pesticides when sprayed on cauliflower for pest control. The use of green chemical photosensitisers (mint extract and riboflavin) in combination with UV light irradiation represents a novel, sustainable, and safe approach to pesticide reduction in produce.
As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and "earth-abundant" nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The construction and characteristics of each classification of the heterojunction system will be critically reviewed, namely metal-g-C3N4, semiconductor-g-C3N4, isotype g-C3N4/g-C3N4, graphitic carbon-g-C3N4, conducting polymer-g-C3N4, sensitizer-g-C3N4, and multicomponent heterojunctions. The band structures, electronic properties, optical absorption, and interfacial charge transfer of g-C3N4-based heterostructured nanohybrids will also be theoretically discussed based on the first-principles density functional theory (DFT) calculations to provide insightful outlooks on the charge carrier dynamics. Apart from that, the advancement of the versatile photoredox applications toward artificial photosynthesis (water splitting and photofixation of CO2), environmental decontamination, and bacteria disinfection will be presented in detail. Last but not least, this comprehensive review will conclude with a summary and some invigorating perspectives on the challenges and future directions at the forefront of this research platform. It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
Design of neutral receptor molecules (ionophores) for beryllium(II) using unsaturated carbonitrile models has been carried out via density functional theory, G3, and G4 calculations. The first part of this work focuses on gas phase binding energies between beryllium(II) and 2-cyano butadiene (2-CN BD), 3-cyano propene (3-CN P), and simpler models with two separate fragments; acrylonitrile and ethylene. Interactions between beryllium(II) and cyano nitrogen and terminal olefin in the models have been examined in terms of geometrical changes, distribution of charge over the entire π-system, and rehybridization of vinyl carbon orbitals. NMR shieldings and vibrational frequencies probed charge centers and strength of interactions. The six-membered cyclic complexes have planar structures with the rehybridized carbon slightly out of plane (16° in 2-CN BD). G3 results show that in 2-CN BD complex participation of vinyl carbon further stabilizes the cyclic adduct by 16.3 kcal mol(-1), whereas, in simpler models, interaction between beryllium(II) and acetonitrile is favorable by 46.4 kcal mol(-1) compared with that of ethylene. The terminal vinyl carbon in 2-CN BD rehybridizes to sp (3) with an increase of 7 % of s character to allow interaction with beryllium(II). G4 calculations show that the Be(II) and 2-CN BD complex is more strongly bound than those with Mg(II) and Ca(II) by 98.5 and 139.2 kcal mol(-1) (-1), respectively. QST2 method shows that the cyclic and acyclic forms of Be(II)-2-CN BD complexes are separated by 12.3 kcal mol(-1) barrier height. Overlap population analysis reveals that Ca(II) can be discriminated based on its tendency to form ionic interaction with the receptor models.
A metal-free mesoporous carbon nitride (MCN) was investigated for the first time as an adsorbent for N-nitrosopyrrolidine (NPYR), which is one of the nitrosamine pollutants. Under the same condition, the adsorption capability of the MCN was found to be higher than that of the MCM-41. Since the adsorption isotherm was consistent with Langmuir and Freundlich model equations, it was suggested that the adsorption of NPYR molecules on the MCN occurred in the form of mono-molecular layer on the heterogeneous surface sites. It was proposed that MCN with suitable adsorption sites was beneficial for the adsorption of NPYR. The evidence on the interaction between the NPYR molecules and the MCN was supported by fluorescence spectroscopy. Two excitation wavelengths owing to the terminal N-C and N=C groups were used to monitor the interactions between the emission sites of the MCN and the NPYR molecules. It was confirmed that the intensity of the emission sites was quenched almost linearly with the concentration of NPYR. This result obviously suggested that the MCN would be applicable as a fluorescence sensor for detection of the NPYR molecules. From the Stern-Volmer plot, the quenching rate constant of terminal N-C groups was determined to be ca. two times higher than that of the N=C groups on MCN, suggesting that the terminal N-C groups on MCN would be the favoured sites interacted with the NPYR. Since initial concentration can be easily recovered, the interactions of NPYR on MCN were weak and might only involve electrostatic interactions.
Combined computational and experimental strategies for the systematic design of chemical sensor arrays using carbonitrile neutral receptors are presented. Binding energies of acetonitrile, n-pentylcarbonitrile and malononitrile with Ca(II), Mg(II), Be(II) and H⁺ have been investigated with the B3LYP, G3, CBS-QB3, G4 and MQZVP methods, showing a general trend H⁺ > Be(II) > Mg(II) > Ca(II). Hydrogen bonding, donor-acceptor and cation-lone pair electron simple models were employed in evaluating the performance of computational methods. Mg(II) is bound to acetonitrile in water by 12.5 kcal/mol, and in the gas phase the receptor is more strongly bound by 33.3 kcal/mol to Mg(II) compared to Ca(II). Interaction of bound cations with carbonitrile reduces the energies of the MOs involved in the proposed σ-p conjugated network. The planar malononitrile-Be(II) complex possibly involves a π-network with a cationic methylene carbon. Fabricated potentiometric chemical sensors show distinct signal patterns that can be exploited in sensor array applications.
A CD-modified micellar EKC (CD-MEKC) method with 2-hydroxypropyl-gamma-CD (HP-gamma-CD) as chiral selector for the enantioseparation of three chiral triazole fungicides, namely hexaconazole, penconazole, and myclobutanil, is reported for the first time. Simultaneous enantioseparation of the three triazole fungicides was successfully achieved using a CD-MEKC system containing 40 mM HP-gamma-CD and 50 mM SDS in 25 mM phosphate buffer (pH 3.0) solution with resolutions (R(s)) greater than 1.60, peak efficiencies (N) greater than 200,000 for all enantiomers and an analysis time within 15 min compared to 36 min as previously reported using sulfated-beta-CD.
Separation and purification of oilfield produced water (OPW) is a major environmental challenge due to the co-production of the OPW during petroleum exploration and production operations. Effective capture of oil contaminant and its in-situ photodegradation is one of the promising methods to purify the OPW. Based on the photocatalytic capability of graphitic carbon nitride (GCN) which was recently rediscovered, photodegradation capability of GCN for OPW was investigated in this study. GCN was synthesized by calcination of urea and further exfoliated into nanosheets. The GCNs were incorporated into polyacrylonitrile nanofibers using electrospinning, which gave a liquid-permeable self-supporting photocatalytic nanofiber mat that can be handled by hand. The photocatalytic nanofiber demonstrated 85.4% degradation of OPW under visible light irradiation, and improved the degradation to 96.6% under UV light. Effective photodegradation of the photocatalytic nanofiber for OPW originates from synergetic effects of oil adsorption by PAN nanofibers and oil photodegradation by GCNs. This study provides an insight for industrial application on purification of OPW through photocatalytic degradation under solar irradiation.
Since bisphenol A (BPA) exhibits endocrine disrupting action and high toxicity in aqueous system, there are high demands to remove it completely. In this study, the BPA removal by sonophotocatalysis coupled with nano-structured graphitic carbon nitride (g-C3N4, GCN) was conducted with various batch tests using energy-based advanced oxidation process (AOP) based on ultrasound (US) and visible light (Vis-L). Results of batch tests indicated that GCN-based sonophotocatalysis (Vis-L/US) had higher rate constants than other AOPs and especially two times higher degradation rate than TiO2-based Vis-L/US. This result infers that GCN is effective in the catalytic activity in Vis-L/US since its surface can be activated by Vis-L to transport electrons from valence band (VB) for utilizing holes (h+VB) in the removal of BPA. In addition, US irradiation exfoliated the GCN effectively. The formation of BPA intermediates was investigated in detail by using high-performance liquid chromatography-mass spectrometry (HPLC/MS). The possible degradation pathway of BPA was proposed.
In this work, natural sunlight successfully induced the deposition of gold (Au), silver (Ag), and palladium (Pd) nanoparticles (NPs) with 17.10, 9.07, and 12.70 wt% onto the surface of graphitic carbon nitride (g-C3N4). The photocatalytic evaluation was carried out by adopting Bisphenol A (BPA) as a pollutant under natural sunlight irradiation. The presence of noble metals was confirmed by EDX, HRTEM, and XPS analysis. The deposition of Ag NPs (7.9 nm) resulted in the degradation rate which was 2.15-fold higher than pure g-C3N4 due to its relatively small particle size, contributing to superior charge separation efficiency. Au/g-C3N4 unveiled inferior photoactivity because the LSPR phenomenon provided two pathways for electron transfer between Au NPs and g-C3N4 further diminished the performance. The improved degradation lies crucially on the particle size and Schottky barrier formation at the interface of M/g-C3N4 (M=Au, Ag, and Pd) but not the visible light harvesting properties. The mechanism insight revealed the holes (h+) and superoxide radical (•O2-) radical actively involved in photocatalytic reaction for all composites.
Linamarin-loaded poly (lactide-co-glycolide) (PLGA) nanoparticles (NPs) were prepared by the double emulsion solvent evaporation technique. The formulated PLGA (50:50) and PLGA (85:15) NPs were spherically shaped, having an average particle size < 190 nm, drug entrapment efficiency (50-52%) and zeta potentials ranging from -25 to -30 mV. Interestingly, all formulated PLGA NPs exhibited a controlled biphasic release profile. Polymer degradation was investigated in the current research to determine the major degradation products and then the polymer biocompatibility as well as safety. The PLGA NPs degradation behaviour was investigated by measuring water uptake, mass loss, change of pH of the degradation medium, morphological changes, and lactic and glycolic acid concentrations. Gravimetrical methods, pH meter, scanning electron microscope and high-performance liquid chromatography were employed, respectively. PLGA (50:50) NPs were found to degrade faster than PLGA (85:15) NPs. With regard to water uptake, mass loss and pH change, the degradation behaviour of PLGA (50:50) NPs was significantly (rho < 0.05) different from that of PLGA (85:15) NPs. A complete degradation of PLGA (50:50) NPs was achieved after 102 days, whereas, only about 60% of PLGA (85:15) NPs were degraded within the same period. Complete degradation and release of the degradation products naturally by the body ensures safety of the delivery carrier.
The lipid fraction of rubber (Hevea brasiliensis (kunth. Muell)) seed was extracted and analyzed for toxicological effect. The toxicological compound such as linamarin in rubber seed oil (RSO) extracted using different solvents, such as hexane (RSOh), mixture of chloroform + methanol (RSOchl+mth) and ethanol (RSOeth) were also studied. Various methods analysis such as Fourier transforms infrared spectroscopy (FTIR) and colorimetric methods were carried out to determine the present of such compounds.
Methanolic extracts of the leaves, stems, and roots of Phyllagathis rotundifolia collected in Malaysia yielded seven galloylated cyanogenic glucosides based on prunasin, with six of these being new compounds, prunasin 2',6'-di-O-gallate (3), prunasin 3',6'-di-O-gallate (4), prunasin 4',6'-di-O-gallate (5), prunasin 2',3',6'-tri-O-gallate (6), prunasin 3',4',6'-tri-O-gallate (7), and prunasin 2',3',4',6'-tetra-O-gallate (8). Also obtained was a new alkyl glycoside, oct-1-en-3-yl alpha-arabinofuranosyl-(1-->6)-beta-glucopyranoside (9). For compounds 3-8, the galloyl groups were individually linked to the sugar moieties via ester bonds. All new structures were established on the basis of NMR and MS spectroscopic studies. In addition, prunasin (1), gallic acid and its methyl ester, beta-glucogallin, 3,6-di-O-galloyl-D-glucose, 1,2,3,6-tetra-O-galloyl-beta-D-glucose, strictinin, 6-O-galloyl-2,3-O-(S)-hexahydroxydiphenoyl-D-glucose, praecoxin B, and pterocarinin C were isolated and identified. The isolation of 1 and its galloyl derivatives (3-8) from a Melastomataceous plant are described for the first time.
Antibiotic resistance is a problem that continues to challenge the healthcare sector, especially in clinically significant pathogens like methicillin-resistant Staphylococcus aureus (MRSA). Herein is described the isolation and structure elucidation of a bioactive compound from Allium stipitatum with antimicrobial activity. Crude Allium stipitatum dichloromethane extract (ASDE) was subjected to systematic purification by chromatographic procedures to afford various bioactive fractions. A fraction that exhibited anti-MRSA activity (4 µg·mL-1) was further characterized to determine the structure. The structure of the compound was elucidated as 2-(methyldithio)pyridine-3-carbonitrile (2-Medpy-3-CN). The 2-Medpy-3-CN compound, which was screened for antimicrobial activity, exhibited minimum inhibitory concentrations (MICs) in the range of 0.5 to >64 µg·mL-1 for tested bacterial species and 0.25 to 2 µg·mL-1 for Candida spp. Further studies are important to confirm the drug target and mechanism of action.
Since 2000, human malaria cases in Malaysia were rapidly reduced with the use of insecticides in Indoor Residual Spray (IRS) and Long-Lasting Insecticide Net (LLIN). Unfortunately, monkey malaria in humans has shown an increase especially in Sabah and Sarawak. The insecticide currently used in IRS is deltamethrin K-Othrine® WG 250 wettable granule, targeting mosquitoes that rest and feed indoor. In Sabah, the primary vector for knowlesi malaria is An. balabacensis a species known to bite outdoor. This study evaluates an alternative method, the Outdoor Residual Spray (ORS) using a novel formulation of deltamethrin K-Othrine® (PolyZone) to examine it suitability to control knowlesi malaria vector in Sabah, compared to the current method. The study was performed at seven villages in Sabah having similar type of houses (wood, bamboo and concrete). Houses were sprayed with deltamethrin K-Othrine® (PolyZone) at two different dosages, 25 mg/m2 and 30 mg/m2 and deltamethrin K-Othrine® WG 250 wettable granule at 25 mg/m2, sprayed indoor and outdoor. Residual activity on different walls was assessed using standard cone bioassay techniques. For larval surveillances, potential breeding sites were surveyed. Larvae were collected and identified, pre and post spraying. Adult survey was done using Human Landing Catch (HLC) performed outdoor and indoor. Detection of malaria parasite in adults was conducted via microscopy and molecular methods. Deltamethrin K-Othrine® (PolyZone) showed higher efficacy when sprayed outdoor. The efficacy was found varied when sprayed on different types of wall surfaces. Deltamethrin K-Othrine® (PolyZone) at 25 mg/m2 was the most effective with regards to ability to high mortality and effective knock down (KD). The vector population was reduced significantly post-spraying and reduction in breeding sites as well. The number of simian malaria infected vector, human and simian malaria transmission were also greatly reduced.
Phyllagathis rotundifolia (Jack) Bl. (Melastomataceae) is a creeping herb found in Peninsular Malaysia and Sumatra. Traditionally, a decoction of the leaves is used in the treatment of malaria, fever and stomach ache.