Displaying publications 1 - 20 of 22 in total

Abstract:
Sort:
  1. Curren E, Kuwahara VS, Yoshida T, Leong SCY
    Funct Integr Genomics, 2024 Mar 02;24(2):46.
    PMID: 38429576 DOI: 10.1007/s10142-024-01328-9
    Cyanobacteria are oxygenic photosynthetic organisms which are found across many ecosystems, including freshwater and marine habitats. They are also found on natural and artificial surfaces. In this study, we cultured and characterise a novel cyanobacterium from the surfaces of foam microplastics of tropical coastal waters. We study the chemical ecology of this cyanobacterium, Sphaerothrix gracilis gen. et sp. nov., together with its potential to form harmful cyanobacterial blooms and bioremediation applications to combat plastic pollution. The genome of S. gracilis spanned 6.7 Mbp, with identification of antibiotic resistance, nitrogen-fixation, plastic-degrading and genes involved in harmful metabolite production. The transport of potentially harmful S. gracilis in coastal environments could have severe implications on human health and food security, especially in times of a cyanobacterial bloom.
    Matched MeSH terms: Nitrogen Fixation
  2. Pueppke SG, Broughton WJ
    Mol Plant Microbe Interact, 1999 Apr;12(4):293-318.
    PMID: 10188270
    Genetically, Rhizobium sp. strain NGR234 and R. fredii USDA257 are closely related. Small differences in their nodulation genes result in NGR234 secreting larger amounts of more diverse lipo-oligosaccharidic Nod factors than USDA257. What effects these differences have on nodulation were analyzed by inoculating 452 species of legumes, representing all three subfamilies of the Leguminosae, as well as the nonlegume Parasponia andersonii, with both strains. The two bacteria nodulated P. andersonii, induced ineffective outgrowths on Delonix regia, and nodulated Chamaecrista fasciculata, a member of the only nodulating genus of the Caesalpinieae tested. Both strains nodulated a range of mimosoid legumes, especially the Australian species of Acacia, and the tribe Ingeae. Highest compatibilities were found with the papilionoid tribes Phaseoleae and Desmodieae. On Vigna spp. (Phaseoleae), both bacteria formed more effective symbioses than rhizobia of the "cowpea" (V. unguiculata) miscellany. USDA257 nodulated an exact subset (79 genera) of the NGR234 hosts (112 genera). If only one of the bacteria formed effective, nitrogen-fixing nodules it was usually NGR234. The only exceptions were with Apios americana, Glycine max, and G. soja. Few correlations can be drawn between Nod-factor substituents and the ability to nodulate specific legumes. Relationships between the ability to nodulate and the origin of the host were not apparent. As both P. andersonii and NGR234 originate from Indonesia/Malaysia/Papua New Guinea, and NGR234's preferred hosts (Desmodiinae/Phaseoleae) are largely Asian, we suggest that broad host range originated in Southeast Asia and spread outward.
    Matched MeSH terms: Nitrogen Fixation/genetics
  3. Alhusayni S, Roswanjaya YP, Rutten L, Huisman R, Bertram S, Sharma T, et al.
    BMC Plant Biol, 2023 Nov 24;23(1):587.
    PMID: 37996841 DOI: 10.1186/s12870-023-04594-0
    BACKGROUND: Nitrogen-fixing nodules occur in ten related taxonomic lineages interspersed with lineages of non-nodulating plant species. Nodules result from an endosymbiosis between plants and diazotrophic bacteria; rhizobia in the case of legumes and Parasponia and Frankia in the case of actinorhizal species. Nodulating plants share a conserved set of symbiosis genes, whereas related non-nodulating sister species show pseudogenization of several key nodulation-specific genes. Signalling and cellular mechanisms critical for nodulation have been co-opted from the more ancient plant-fungal arbuscular endomycorrhizal symbiosis. Studies in legumes and actinorhizal plants uncovered a key component in symbiotic signalling, the LRR-type SYMBIOSIS RECEPTOR KINASE (SYMRK). SYMRK is essential for nodulation and arbuscular endomycorrhizal symbiosis. To our surprise, however, despite its arbuscular endomycorrhizal symbiosis capacities, we observed a seemingly critical mutation in a donor splice site in the SYMRK gene of Trema orientalis, the non-nodulating sister species of Parasponia. This led us to investigate the symbiotic functioning of SYMRK in the Trema-Parasponia lineage and to address the question of to what extent a single nucleotide polymorphism in a donor splice site affects the symbiotic functioning of SYMRK.

    RESULTS: We show that SYMRK is essential for nodulation and endomycorrhization in Parasponia andersonii. Subsequently, it is revealed that the 5'-intron donor splice site of SYMRK intron 12 is variable and, in most dicotyledon species, doesn't contain the canonical dinucleotide 'GT' signature but the much less common motif 'GC'. Strikingly, in T. orientalis, this motif is converted into a rare non-canonical 5'-intron donor splice site 'GA'. This SYMRK allele, however, is fully functional and spreads in the T. orientalis population of Malaysian Borneo. A further investigation into the occurrence of the non-canonical GA-AG splice sites confirmed that these are extremely rare.

    CONCLUSION: SYMRK functioning is highly conserved in legumes, actinorhizal plants, and Parasponia. The gene possesses a non-common 5'-intron GC donor splice site in intron 12, which is converted into a GA in T. orientalis accessions of Malaysian Borneo. The discovery of this functional GA-AG splice site in SYMRK highlights a gap in our understanding of splice donor sites.

    Matched MeSH terms: Nitrogen Fixation/genetics
  4. Rahman MM, Islam AM, Azirun SM, Boyce AN
    ScientificWorldJournal, 2014;2014:490841.
    PMID: 24971378 DOI: 10.1155/2014/490841
    Bush bean, long bean, mung bean, and winged bean plants were grown with N fertilizer at rates of 0, 2, 4, and 6 g N m(-2) preceding rice planting. Concurrently, rice was grown with N fertilizer at rates of 0, 4, 8, and 12 g N m(-2). No chemical fertilizer was used in the 2nd year of crop to estimate the nitrogen agronomic efficiency (NAE), nitrogen recovery efficiency (NRE), N uptake, and rice yield when legume crops were grown in rotation with rice. Rice after winged bean grown with N at the rate of 4 g N m(-2) achieved significantly higher NRE, NAE, and N uptake in both years. Rice after winged bean grown without N fertilizer produced 13-23% higher grain yield than rice after fallow rotation with 8 g N m(-2). The results revealed that rice after winged bean without fertilizer and rice after long bean with N fertilizer at the rate of 4 g N m(-2) can produce rice yield equivalent to that of rice after fallow with N fertilizer at rates of 8 g N m(-2). The NAE, NRE, and harvest index values for rice after winged bean or other legume crop rotation indicated a positive response for rice production without deteriorating soil fertility.
    Matched MeSH terms: Nitrogen Fixation
  5. Lee J, Tan LL, Chai SP
    Nanoscale, 2021 Apr 21;13(15):7011-7033.
    PMID: 33889914 DOI: 10.1039/d1nr00783a
    As an indispensable energy source, ammonia plays an essential role in agriculture and various industries. Given that the current ammonia production is still dominated by the energy-intensive and high carbon footprint Haber-Bosch process, photocatalytic nitrogen fixation represents a low-energy consuming and sustainable approach to generate ammonia. Heterostructured photocatalysts are hybrid materials composed of semiconductor materials containing interfaces that make full use of the unique superiorities of the constituents and synergistic effects between them. These promising photocatalysts have superior performances and substantial potential in photocatalytic reduction of nitrogen. In this review, a wide spectrum of recently developed heterostructured photocatalysts for nitrogen fixation to ammonia are evaluated. The fundamentals of solar-to-ammonia conversion, basic principles of various heterojunction photocatalysts and modification strategies are systematically reviewed. Finally, a brief summary and perspectives on the ongoing challenges and directions for future development of nitrogen photofixation catalysts are also provided.
    Matched MeSH terms: Nitrogen Fixation
  6. Xu H, Detto M, Fang S, Chazdon RL, Li Y, Hau BCH, et al.
    Commun Biol, 2020 06 19;3(1):317.
    PMID: 32561898 DOI: 10.1038/s42003-020-1041-y
    Legumes provide an essential service to ecosystems by capturing nitrogen from the atmosphere and delivering it to the soil, where it may then be available to other plants. However, this facilitation by legumes has not been widely studied in global tropical forests. Demographic data from 11 large forest plots (16-60 ha) ranging from 5.25° S to 29.25° N latitude show that within forests, leguminous trees have a larger effect on neighbor diversity than non-legumes. Where soil nitrogen is high, most legume species have higher neighbor diversity than non-legumes. Where soil nitrogen is low, most legumes have lower neighbor diversity than non-legumes. No facilitation effect on neighbor basal area was observed in either high or low soil N conditions. The legume-soil nitrogen positive feedback that promotes tree diversity has both theoretical implications for understanding species coexistence in diverse forests, and practical implications for the utilization of legumes in forest restoration.
    Matched MeSH terms: Nitrogen Fixation
  7. Yin TT, Pin UL, Ghazali AH
    Trop Life Sci Res, 2015 Apr;26(1):101-10.
    PMID: 26868594 MyJurnal
    The production of nitrogenase enzyme and auxins by free living diazotrophs has the potential to influence the growth of host plants. In this study, diazotrophs were grown in the presence of various concentrations of nitogen (N) to determine the optimal concentration of N for microbial growth stimulation, promotion of gaseous N (N2) fixation, and phytohormone production. Therefore, we investigate whether different levels of N supplied to Herbaspirillum seropedicae (Z78) have significant effects on nitrogenase activity and auxin production. The highest nitrogenase activity and the lowest auxin production of H. seropedicae (Z78) were both recorded at 0 gL(-1) of NH4Cl. Higher levels of external N caused a significant decrease in the nitrogenase activity and an increased production of auxins. In a subsequent test, two different inoculum sizes of Z78 (10(6) and 10(12) cfu/ml) were used to study the effect of different percentages of acetylene on nitrogenase activity of the inoculum via the acetylene reduction assay (ARA). The results showed that the optimal amount of acetylene required for nitrogenase enzyme activity was 5% for the 10(6) cfu/ml inoculum, whereas the higher inoculum size (10(12) cfu/ml) required at least 10% of acetylene for optimal nitrogenase activity. These findings provide a clearer understanding of the effects of N levels on diazotrophic nitrogenase activity and auxin production, which are important factors influencing plant growth.
    Matched MeSH terms: Nitrogen Fixation
  8. Zakry FA, Shamsuddin ZH, Abdul Rahim K, Zawawi Zakaria Z, Abdul Rahim A
    Microbes Environ, 2012;27(3):257-62.
    PMID: 22446306
    There are increasing applications of diazotrophic rhizobacteria in the sustainable agriculture system. A field experiment on young immature oil palm was conducted to quantify the uptake of N derived from N₂ fixation by the diazotroph Bacillus sphaericus strain UPMB-10, using the ¹⁵N isotope dilution method. Eight months after ¹⁵N application, young immature oil palms that received 67% of standard N fertilizer application together with B. sphaericus inoculation had significantly lower ¹⁵N enrichment than uninoculated palms that received similar N fertilizers. The dilution of labeled N served as a marker for the occurrence of biological N₂ fixation. The proportion of N uptake that was derived from the atmosphere was estimated as 63% on the whole plant basis. The inoculation process increased the N and dry matter yields of the palm leaflets and rachis significantly. Field planting of young, immature oil palm in soil inoculated with B. sphaericus UPMB-10 might mitigate inorganic fertilizer-N application through supplementation by biological nitrogen fixation. This could be a new and important source of nitrogen biofertilizer in the early phase of oil palm cultivation in the field.
    Matched MeSH terms: Nitrogen Fixation
  9. Tang SY, Hara S, Melling L, Goh KJ, Hashidoko Y
    Biosci Biotechnol Biochem, 2010;74(9):1972-5.
    PMID: 20834139
    Root-associating bacteria of the nipa palm (Nypa fruticans), preferring brackish-water affected mud in Sarawak, Malaysia, were investigated. In a comparison of rhizobacterial microbiota between the nipa and the sago (Metroxylon sagu) palm, it was found that the nipa palm possessed a group of Burkholderia vietnamiensis as its main active nitrogen-fixing endophytic bacterium. Acetylene reduction by the various isolates of B. vietnamiensis was constant (44 to 68 nmol h(-1) in ethylene production rate) in soft gel medium containing 0.2% sucrose as sole carbon source, and the bacterium also showed motility and biofilm-forming capacity. This is the first report of endophytic nitrogen-fixing bacteria from nipa palm.
    Matched MeSH terms: Nitrogen Fixation*
  10. Nahi A, Othman R, Omar D, Ebrahimi M
    Pol J Microbiol, 2016 Aug 26;65(3):377-382.
    PMID: 29334074 DOI: 10.5604/17331331.1215618
    A study was carried out to determine the effects of paraquat, pretilachlor and 2, 4-D on growth and nitrogen fixing activity of Stenotrophomonas maltophilia (Sb16) and pH of Jensen's N-free medium. The growth of Sb16 and pH of medium were significantly reduced with full (X) and double (2X) doses of tested herbicides, but nitrogen fixing activity was decreased by 2X doses. The nitrogenase activity had the highest value in samples treated with 1/2X of 2, 4-D on fifth incubation day, but 2X of 2, 4-D had the most adverse effect. An inhibition in the growth and nitrogenase activity was recovered on the last days of incubation.
    Matched MeSH terms: Nitrogen Fixation/drug effects*
  11. Graham LE, Knack JJ, Graham ME, Graham JM, Zulkifly S
    J Phycol, 2015 Jun;51(3):408-18.
    PMID: 26986658 DOI: 10.1111/jpy.12296
    Periphyton dominated by the cellulose-rich filamentous green alga Cladophora forms conspicuous growths along rocky marine and freshwater shorelines worldwide, providing habitat for diverse epibionts. Bacterial epibionts have been inferred to display diverse functions of biogeochemical significance: N-fixation and other redox reactions, phosphorus accumulation, and organic degradation. Here, we report taxonomic diversity of eukaryotic and prokaryotic epibionts and diversity of genes associated with materials cycling in a Cladophora metagenome sampled from Lake Mendota, Dane Co., WI, USA, during the growing season of 2012. A total of 1,060 distinct 16S, 173 18S, and 351 28S rRNA operational taxonomic units, from which >220 genera or species of bacteria (~60), protists (~80), fungi (6), and microscopic metazoa (~80), were distinguished with the use of reference databases. We inferred the presence of several algal taxa generally associated with marine systems and detected Jaoa, a freshwater periphytic ulvophyte previously thought endemic to China. We identified six distinct nifH gene sequences marking nitrogen fixation, >25 bacterial and eukaryotic cellulases relevant to sedimentary C-cycling and technological applications, and genes encoding enzymes in aerobic and anaerobic pathways for vitamin B12 biosynthesis. These results emphasize the importance of Cladophora in providing habitat for microscopic metazoa, fungi, protists, and bacteria that are often inconspicuous, yet play important roles in ecosystem biogeochemistry.
    Matched MeSH terms: Nitrogen Fixation
  12. Sahruzaini NA, Rejab NA, Harikrishna JA, Khairul Ikram NK, Ismail I, Kugan HM, et al.
    Front Plant Sci, 2020;11:531.
    PMID: 32431724 DOI: 10.3389/fpls.2020.00531
    The last decade has witnessed dramatic changes in global food consumption patterns mainly because of population growth and economic development. Food substitutions for healthier eating, such as swapping regular servings of meat for protein-rich crops, is an emerging diet trend that may shape the future of food systems and the environment worldwide. To meet the erratic consumer demand in a rapidly changing world where resources become increasingly scarce due largely to anthropogenic activity, the need to develop crops that benefit both human health and the environment has become urgent. Legumes are often considered to be affordable plant-based sources of dietary proteins. Growing legumes provides significant benefits to cropping systems and the environment because of their natural ability to perform symbiotic nitrogen fixation, which enhances both soil fertility and water-use efficiency. In recent years, the focus in legume research has seen a transition from merely improving economically important species such as soybeans to increasingly turning attention to some promising underutilized species whose genetic resources hold the potential to address global challenges such as food security and climate change. Pulse crops have gained in popularity as an affordable source of food or feed; in fact, the United Nations designated 2016 as the International Year of Pulses, proclaiming their critical role in enhancing global food security. Given that many studies have been conducted on numerous underutilized pulse crops across the world, we provide a systematic review of the related literature to identify gaps and opportunities in pulse crop genetics research. We then discuss plausible strategies for developing and using pulse crops to strengthen food and nutrition security in the face of climate and anthropogenic changes.
    Matched MeSH terms: Nitrogen Fixation
  13. Tang A, Haruna AO, Majid NMA, Jalloh MB
    Microorganisms, 2020 Mar 20;8(3).
    PMID: 32245141 DOI: 10.3390/microorganisms8030442
    In the midst of the major soil degradation and erosion faced by tropical ecosystems, rehabilitated forests are being established to avoid the further deterioration of forest lands. In this context, cellulolytic, nitrogen-fixing (N-fixing), phosphate-solubilizing bacteria are very important functional groups in regulating the elemental cycle and plant nutrition, hence replenishing the nutrient content in forest soils. As is the case for other potential plant growth-promoting (PGP) rhizobacteria, these functional bacteria could have cross-functional abilities or beneficial traits that are essential for plants and can improve their growth. This study was conducted to isolate, identify, and characterize selected PGP properties of these three functional groups of bacteria from tropical rehabilitated forest soils at Universiti Putra Malaysia Bintulu Sarawak Campus, Malaysia. The bacteria were isolated based on their colonial growth on respective functional media, identified using both molecular and selected biochemical properties, and were assessed for their functional quantitative activities as well as PGP properties based on seed germination tests and indole-3-acetic acid (IAA) production. Out of the 15 identified bacterial isolates that exhibited beneficial phenotypic traits, a third belong to the genus Burkholderia and a fifth to Stenotrophomonas sp., with both genera consisting of members from two different functional groups. The results of the experiments confirm the multiple PGP traits of some selected bacterial isolates based on their respective high functional activities, root and shoot lengths, and seedling vigor improvements when bacterized on mung bean seeds, as well as significant IAA production. The results of this study suggest that these functional bacterial strains could potentially be included in bio-fertilizer formulations for crop growth on acid soils.
    Matched MeSH terms: Nitrogen Fixation
  14. Halim MA, Choo QC, Ghazali AHA, Wajidi MFF, Najimudin N
    Lett Appl Microbiol, 2021 May;72(5):610-618.
    PMID: 33525052 DOI: 10.1111/lam.13455
    Paenibacillus durus strain ATCC 35681T is a Gram-positive diazotroph that displayed capability of fixing nitrogen even in the presence of nitrate or ammonium. However, the nitrogen fixation activity was detected only at day 1 of growth when cultured in liquid nitrogen-enriched medium. The transcripts of all the nifH homologues were present throughout the 9-day study. When grown in nitrogen-depleted medium, nitrogenase activities occurred from day 1 until day 6 and the nifH transcripts were also present during the course of the study albeit at different levels. In both studies, the absence of nitrogen fixation activity regardless of the presence of the nifH transcripts raised the possibility of a post-transcriptional or post-translational regulation of the system. A putative SigA box sequence was found upstream of the transcription start site of nifB1, the first gene in the major nitrogen fixation cluster. The upstream region of nifB2 showed a promoter recognizable by SigE, a sigma factor normally involved in sporulation.
    Matched MeSH terms: Nitrogen Fixation/genetics*
  15. Raza A, Ejaz S, Saleem MS, Hejnak V, Ahmad F, Ahmed MAA, et al.
    PLoS One, 2021;16(12):e0261468.
    PMID: 34919599 DOI: 10.1371/journal.pone.0261468
    Nitrogen (N) is a macronutrient desired by crop plants in large quantities. However, hiking fertilizer prices need alternative N sources for reducing its requirements through appropriate management practices. Plant growth promoting rhizobacteria (PGPR) are well-known for their role in lowering N requirements of crop plants. This study assessed the impact of PGPR inoculation on growth, allometry and biochemical traits of chili under different N doses. Two PGPR, i.e., Azospirillum 'Er-20' (nitrogen fixing) and Agrobacterium 'Ca-18' (phosphorous solubilizing) were used for inoculation, while control treatment had no PGPR inoculation. Six N doses, i.e., 100, 80, 75, 70, 60 and 50% of the N required by chili were included in the study. Data relating to growth traits, biochemical attributes and yield related traits were recorded. Interaction among N doses and PGPR inoculation significantly altered all growth traits, biochemical attributes and yield related traits. The highest values of the recorded traits were observed for 100% N with and without PGPR inoculation and 75% N with PGPR inoculation. The lowest values of the recorded traits were noted for 50% N without PGPR inoculation. The PGPR inoculation improved the measured traits compared to the traits recorded noted in same N dose without PGPR inoculation. Results revealed that PGPR had the potential to lower 25% N requirement for chili. Therefore, it is recommended that PGPR must be used in chili cultivation to lower N requirements.
    Matched MeSH terms: Nitrogen Fixation/physiology
  16. van Velzen R, Holmer R, Bu F, Rutten L, van Zeijl A, Liu W, et al.
    Proc Natl Acad Sci U S A, 2018 May 15;115(20):E4700-E4709.
    PMID: 29717040 DOI: 10.1073/pnas.1721395115
    Nodules harboring nitrogen-fixing rhizobia are a well-known trait of legumes, but nodules also occur in other plant lineages, with rhizobia or the actinomycete Frankia as microsymbiont. It is generally assumed that nodulation evolved independently multiple times. However, molecular-genetic support for this hypothesis is lacking, as the genetic changes underlying nodule evolution remain elusive. We conducted genetic and comparative genomics studies by using Parasponia species (Cannabaceae), the only nonlegumes that can establish nitrogen-fixing nodules with rhizobium. Intergeneric crosses between Parasponia andersonii and its nonnodulating relative Trema tomentosa demonstrated that nodule organogenesis, but not intracellular infection, is a dominant genetic trait. Comparative transcriptomics of P. andersonii and the legume Medicago truncatula revealed utilization of at least 290 orthologous symbiosis genes in nodules. Among these are key genes that, in legumes, are essential for nodulation, including NODULE INCEPTION (NIN) and RHIZOBIUM-DIRECTED POLAR GROWTH (RPG). Comparative analysis of genomes from three Parasponia species and related nonnodulating plant species show evidence of parallel loss in nonnodulating species of putative orthologs of NIN, RPG, and NOD FACTOR PERCEPTION Parallel loss of these symbiosis genes indicates that these nonnodulating lineages lost the potential to nodulate. Taken together, our results challenge the view that nodulation evolved in parallel and raises the possibility that nodulation originated ∼100 Mya in a common ancestor of all nodulating plant species, but was subsequently lost in many descendant lineages. This will have profound implications for translational approaches aimed at engineering nitrogen-fixing nodules in crop plants.
    Matched MeSH terms: Nitrogen Fixation*
  17. Kuan KB, Othman R, Abdul Rahim K, Shamsuddin ZH
    PLoS One, 2016;11(3):e0152478.
    PMID: 27011317 DOI: 10.1371/journal.pone.0152478
    Plant growth-promoting rhizobacteria (PGPR) may provide a biological alternative to fix atmospheric N2 and delay N remobilisation in maize plant to increase crop yield, based on an understanding that plant-N remobilisation is directly correlated to its plant senescence. Thus, four PGPR strains were selected from a series of bacterial strains isolated from maize roots at two locations in Malaysia. The PGPR strains were screened in vitro for their biochemical plant growth-promoting (PGP) abilities and plant growth promotion assays. These strains were identified as Klebsiella sp. Br1, Klebsiella pneumoniae Fr1, Bacillus pumilus S1r1 and Acinetobacter sp. S3r2 and a reference strain used was Bacillus subtilis UPMB10. All the PGPR strains were tested positive for N2 fixation, phosphate solubilisation and auxin production by in vitro tests. In a greenhouse experiment with reduced fertiliser-N input (a third of recommended fertiliser-N rate), the N2 fixation abilities of PGPR in association with maize were determined by 15N isotope dilution technique at two harvests, namely, prior to anthesis (D50) and ear harvest (D65). The results indicated that dry biomass of top, root and ear, total N content and bacterial colonisations in non-rhizosphere, rhizosphere and endosphere of maize roots were influenced by PGPR inoculation. In particular, the plants inoculated with B. pumilus S1r1 generally outperformed those with the other treatments. They produced the highest N2 fixing capacity of 30.5% (262 mg N2 fixed plant-1) and 25.5% (304 mg N2 fixed plant-1) of the total N requirement of maize top at D50 and D65, respectively. N remobilisation and plant senescence in maize were delayed by PGPR inoculation, which is an indicative of greater grain production. This is indicated by significant interactions between PGPR strains and time of harvests for parameters on N uptake and at. % 15Ne of tassel. The phenomenon is also supported by the lower N content in tassels of maize treated with PGPR, namely, B. pumilus S1r1, K. pneumoniae Fr1, B. subtilis UPMB10 and Acinetobacter sp. S3r2 at D65 harvest. This study provides evidence that PGPR inoculation, namely, B. pumilus S1r1 can biologically fix atmospheric N2 and provide an alternative technique, besides plant breeding, to delay N remobilisation in maize plant for higher ear yield (up to 30.9%) with reduced fertiliser-N input.
    Matched MeSH terms: Nitrogen Fixation*
  18. Too CC, Keller A, Sickel W, Lee SM, Yule CM
    Front Microbiol, 2018;9:2859.
    PMID: 30564202 DOI: 10.3389/fmicb.2018.02859
    Tropical peat swamp forests sequester globally significant stores of carbon in deep layers of waterlogged, anoxic, acidic and nutrient-depleted peat. The roles of microbes in supporting these forests through the formation of peat, carbon sequestration and nutrient cycling are virtually unknown. This study investigated physicochemical peat properties and microbial diversity between three dominant tree species: Shorea uliginosa (Dipterocarpaceae), Koompassia malaccensis (legumes associated with nitrogen-fixing bacteria), Eleiodoxa conferta (palm) and depths (surface, 45 and 90 cm) using microbial 16S rRNA gene amplicon sequencing. Water pH, oxygen, nitrogen, phosphorus, total phenolic contents and C/N ratio differed significantly between depths, but not tree species. Depth also strongly influenced microbial diversity and composition, while both depth and tree species exhibited significant impact on the archaeal communities. Microbial diversity was highest at the surface, where fresh leaf litter accumulates, and nutrient supply is guaranteed. Nitrogen was the core parameter correlating to microbial communities, but the interactive effects from various environmental variables displayed significant correlation to relative abundance of major microbial groups. Proteobacteria was the dominant phylum and the most abundant genus, Rhodoplanes, might be involved in nitrogen fixation. The most abundant methanogens and methanotrophs affiliated, respectively, to families Methanomassiliicoccaceae and Methylocystaceae. Our results demonstrated diverse microbial communities and provide valuable insights on microbial ecology in these extreme ecosystems.
    Matched MeSH terms: Nitrogen Fixation
  19. Baghdadi A, Halim RA, Ghasemzadeh A, Ramlan MF, Sakimin SZ
    PeerJ, 2018;6:e5280.
    PMID: 30386686 DOI: 10.7717/peerj.5280
    Background: Corn silage is an important feed for intense ruminant production, but the growth of corn relies heavily on the use of chemical fertilizers. Sustainable crop production requires careful management of all nutrient sources available on a farm, particularly in corn-based cropping systems.

    Methods: Experiments were conducted to determine the appropriate technique of corn-legume intercropping in conjunction with the supplemental use of chemical fertilizers, organic manure, and biofertilizers (BFs). Acetylene reduction assays (ARAs) were also performed on corn and soybean roots.

    Results: Combining chemical fertilizers with chicken manure (CM) in a 50:50 ratio and applying 50% NPK+50% CM+BF produced fresh forage and dry matter (DM) yields that were similar to those produced in the 100% nitrogen (N), phosphorus (P), potassium (K) treatment. Among the lone fertilizer treatments, the inorganic fertilizer (100% NPK) treatment produced the highest DM yield (13.86 t/ha) of forage and outyielded the 100% CM (9.74 t/ha) treatment. However, when CM was combined with NPK, the resulting DM yield of forage (13.86 t/ha) was the same as that resulting from 100% NPK (13.68 t/ha). Compared with CM applications alone, combinations of NPK and CM applications resulted in increased plant height, crop growth rates (CGRs) and leaf area index (LAI), but the values of these parameters were similar to those resulting from 100% NPK application. Fertilizers in which the ratio was 50% CM+50% NPK or 50% CM+50% NPK+BF resulted in protein yields that were similar to those resulting from conventional fertilizers. Similarly, the CP content did not significantly differ between applications of the 100% NPK and 50% CM+50% NPK fertilizers. The use of BFs had no significant impact on improving either the yield or quality of forage fertilized with inorganic or organic fertilizer. Lactic acid responded differently to different fertilizer applications and was significantly higher in the fertilized plots than in the unfertilized plots. Compared with treatments of lone chemical and lone organic manure fertilizers, treatments involving applications of BF and a combination of BF and NPK or CM resulted in higher ARA values.

    Discussion: There is no simple and easy approach to increase biological nitrogen fixation (BNF) in grain legumes grown as part of a cropping system under realistic farm field conditions. Overall, evidence recorded from this study proves that, compared with corn monocrops combined with CM and chemical fertilizers, corn-soybean intercrops could increase forage yields and quality, produce higher total protein yields, and reduce the need for protein supplements and chemical fertilizers.

    Matched MeSH terms: Nitrogen Fixation
  20. Panhwar QA, Naher UA, Shamshuddin J, Jusop S, Othman R, Latif MA, et al.
    PLoS One, 2014;9(10):e97241.
    PMID: 25285745 DOI: 10.1371/journal.pone.0097241
    A study was conducted to determine the total microbial population, the occurrence of growth promoting bacteria and their beneficial traits in acid sulfate soils. The mechanisms by which the bacteria enhance rice seedlings grown under high Al and low pH stress were investigated. Soils and rice root samples were randomly collected from four sites in the study area (Kelantan, Malaysia). The topsoil pH and exchangeable Al ranged from 3.3 to 4.7 and 1.24 to 4.25 cmol(c) kg(-1), respectively, which are considered unsuitable for rice production. Total bacterial and actinomycetes population in the acidic soils were found to be higher than fungal populations. A total of 21 phosphate-solubilizing bacteria (PSB) including 19 N2-fixing strains were isolated from the acid sulfate soil. Using 16S rRNA gene sequence analysis, three potential PSB strains based on their beneficial characteristics were identified (Burkholderia thailandensis, Sphingomonas pituitosa and Burkholderia seminalis). The isolated strains were capable of producing indoleacetic acid (IAA) and organic acids that were able to reduce Al availability via a chelation process. These PSB isolates solubilized P (43.65%) existing in the growth media within 72 hours of incubation. Seedling of rice variety, MR 219, grown at pH 4, and with different concentrations of Al (0, 50 and 100 µM) was inoculated with these PSB strains. Results showed that the bacteria increased the pH with a concomitant reduction in Al concentration, which translated into better rice growth. The improved root volume and seedling dry weight of the inoculated plants indicated the potential of these isolates to be used in a bio-fertilizer formulation for rice cultivation on acid sulfate soils.
    Matched MeSH terms: Nitrogen Fixation
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links