Displaying all 20 publications

Abstract:
Sort:
  1. Balaji Raghavendran HR, Puvaneswary S, Talebian S, Murali MR, Raman Murali M, Naveen SV, et al.
    PLoS One, 2014;9(8):e104389.
    PMID: 25140798 DOI: 10.1371/journal.pone.0104389
    A comparative study on the in vitro osteogenic potential of electrospun poly-L-lactide/hydroxyapatite/collagen (PLLA/HA/Col, PLLA/HA, and PLLA/Col) scaffolds was conducted. The morphology, chemical composition, and surface roughness of the fibrous scaffolds were examined. Furthermore, cell attachment, distribution, morphology, mineralization, extracellular matrix protein localization, and gene expression of human mesenchymal stromal cells (hMSCs) differentiated on the fibrous scaffolds PLLA/Col/HA, PLLA/Col, and PLLA/HA were also analyzed. The electrospun scaffolds with a diameter of 200-950 nm demonstrated well-formed interconnected fibrous network structure, which supported the growth of hMSCs. When compared with PLLA/H%A and PLLA/Col scaffolds, PLLA/Col/HA scaffolds presented a higher density of viable cells and significant upregulation of genes associated with osteogenic lineage, which were achieved without the use of specific medium or growth factors. These results were supported by the elevated levels of calcium, osteocalcin, and mineralization (P<0.05) observed at different time points (0, 7, 14, and 21 days). Furthermore, electron microscopic observations and fibronectin localization revealed that PLLA/Col/HA scaffolds exhibited superior osteoinductivity, when compared with PLLA/Col or PLLA/HA scaffolds. These findings indicated that the fibrous structure and synergistic action of Col and nano-HA with high-molecular-weight PLLA played a vital role in inducing osteogenic differentiation of hMSCs. The data obtained in this study demonstrated that the developed fibrous PLLA/Col/HA biocomposite scaffold may be supportive for stem cell based therapies for bone repair, when compared with the other two scaffolds.
    Matched MeSH terms: Osteogenesis/physiology*
  2. Reza Sanaei M, Abu J, Nazari M, A B MZ, Allaudin ZN
    Vet Surg, 2013 Nov;42(8):963-70.
    PMID: 24117844 DOI: 10.1111/j.1532-950X.2013.12057.x
    To evaluate the osteogenic potential of avian demineralized bone matrix (DBM) in the context of implant geometry.
    Matched MeSH terms: Osteogenesis/physiology
  3. Salin N, Ishak AK, Abdul Rahman S, Ali M, Nawawi HM, Said MS, et al.
    Med J Malaysia, 2008 Jul;63 Suppl A:67-8.
    PMID: 19024987
    Bone formation is an active process whereby osteoblasts are found on the surface of the newly formed bone. Adhesion to extracellular matrix is essential for the development of bone however not all surfaces are suitable for osteoblast adhesion and don't support osteoblastic functions. The objective of this study was to test the suitability of a collagen based microcarrier which would support osteoblastic functions.
    Matched MeSH terms: Osteogenesis/physiology*
  4. Hamid AA, Ruszymah BH, Aminuddin BS, Sathappan S, Chua KH
    Med J Malaysia, 2008 Jul;63 Suppl A:9-10.
    PMID: 19024959
    Human adipose-derived stem cells (HADSC) have demonstrated the capacity of differentiating into bone depending on the specific induction stimuli and growth factors. However, investigation on stem cell characteristic after osteogenic differentiation is still lacking. The goal of this study was to investigate the differential expression of sternness and osteogenic genes in non-induced HADSC compared with HADSC after osteogenic induction using quantitative Real Time RT-PCR. Our results showed that OCT-4, REX-1, FZD9, OSC, RUNX, and ALP were up regulated after osteogenic induction. This may indicated that HADSCs after osteogenic induction still possessed some stemness properties.
    Matched MeSH terms: Osteogenesis/physiology
  5. Ooi FK, Singh R, Singh HJ, Umemura Y
    Osteoporos Int, 2009 Jun;20(6):963-72.
    PMID: 18839049 DOI: 10.1007/s00198-008-0760-6
    SUMMARY: This study determines the minimum level of exercise required to maintain 8 weeks of jumping exercise-induced bone gains in rats. It was found that the minimum level of exercise required for maintaining the different exercise-induced bone gains varied between 11% and 18% of the initial exercise intensity.

    INTRODUCTION: This study ascertains the minimum level of follow-up exercise required to maintain bone gains induced by an 8-week jumping exercise in rats.

    METHODS: Twelve groups of 12-week old rats (n = 10 rats per group) were given either no exercise for 8 (8S) or 32 weeks (32S), or received 8 weeks of standard training program (8STP) that consisted of 200 jumps per week, given at 40 jumps per day for 5 days per week, followed by 24 weeks of exercise at loads of either 40 or 20 or 10 jumps per day, for either 5, or 3, or 1 day/week. Bone mass, strength, and morphometric properties were measured in the right tibia. Data were analyzed using one-way analyses of variance.

    RESULTS: Bone mass, strength, mid-shaft periosteal perimeter and cortical area were significantly (p < 0.05) higher in the rats given 8STP than that in the 8S group. The minimal level of exercise required to maintain the bone gains was 31, 36, 25, and 21 jumps per week for mass, strength, periosteal perimeter and cortical area, respectively.

    CONCLUSIONS: Eight weeks of jumping exercise-induced bone gains could be maintained for a period of 24 weeks with follow-up exercise consisting of 11% to 18% of the initial exercise load.

    Matched MeSH terms: Osteogenesis/physiology*
  6. Mohd Sabee MMS, Kamalaldin NA, Yahaya BH, Abdul Hamid ZA
    J Mater Sci Mater Med, 2020 May 04;31(5):45.
    PMID: 32367409 DOI: 10.1007/s10856-020-06380-y
    Recently, surface engineered biomaterials through surface modification are extensively investigated due to its potential to enhance cellular homing and migration which contributes to a successful drug delivery process. This study is focused on osteoblasts response towards surface engineered using a simple sodium hydroxide (NaOH) hydrolysis and growth factors conjugated poly(lactic acid) (PLA) microspheres. In this study, evaluation of the relationship of NaOH concentration with the molecular weight changes and surface morphology of PLA microspheres specifically wall thickness and porosity prior to in vitro studies was investigated. NaOH hydrolysis of 0.1 M, 0.3 M and 0.5 M were done to introduce hydrophilicity on the PLA prior to conjugation with basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF). Morphology changes showed that higher concentration of NaOH could accelerate the hydrolysis process as the highest wall thickness was observed at 0.5 M NaOH with ~3.52 µm. All surface modified and growth factors conjugated PLA microspheres wells enhanced the migration of the cells during wound healing process as wound closure was 100% after 3 days of treatment. Increase in hydrophilicity of the surface engineered and growth factors conjugated PLA microspheres provides favorable surface for cellular attachment of osteoblast, which was reflected by positive DAPI staining of the cells' nucleus. Surface modified and growth factors conjugated PLA microspheres were also able to enhance the capability of the PLA in facilitating the differentiation process of mesenchymal stem cells (MSCs) into osteogenic lineage since only positive stain was observed on surface engineered and growth factors conjugated PLA microspheres. These results indicated that the surface engineered and growth factors conjugated PLA microspheres were non-toxic for biological environments and the improved hydrophilicity made them a potential candidate as a drug delivery vehicle as the cells can adhere, attach and proliferate inside it.
    Matched MeSH terms: Osteogenesis/physiology*
  7. Peake NJ, Hobbs AJ, Pingguan-Murphy B, Salter DM, Berenbaum F, Chowdhury TT
    Osteoarthritis Cartilage, 2014 Nov;22(11):1800-7.
    PMID: 25086404 DOI: 10.1016/j.joca.2014.07.018
    C-type natriuretic peptide (CNP) has been demonstrated in human and mouse models to play critical roles in cartilage homeostasis and endochondral bone formation. Indeed, targeted inactivation of the genes encoding CNP results in severe dwarfism and skeletal defects with a reduction in growth plate chondrocytes. Conversely, cartilage-specific overexpression of CNP was observed to rescue the phenotype of CNP deficient mice and significantly enhanced bone growth caused by growth plate expansion. In vitro studies reported that exogenous CNP influenced chondrocyte differentiation, proliferation and matrix synthesis with the response dependent on CNP concentration. The chondroprotective effects were shown to be mediated by natriuretic peptide receptor (Npr)2 and enhanced synthesis of cyclic guanosine-3',5'-monophosphate (cGMP) production. Recent studies also showed certain homeostatic effects of CNP are mediated by the clearance inactivation receptor, Npr3, highlighting several mechanisms in maintaining tissue homeostasis. However, the CNP signalling systems are complex and influenced by multiple factors that will lead to altered signalling and tissue dysfunction. This review will discuss the differential role of CNP signalling in regulating cartilage and bone homeostasis and how the pathways are influenced by age, inflammation or sex. Evidence indicates that enhanced CNP signalling may prevent growth retardation and protect cartilage in patients with inflammatory joint disease.
    Matched MeSH terms: Osteogenesis/physiology*
  8. Alyessary AS, Yap AU, Othman SA, Rahman MT, Al-Namnam NM, Radzi Z
    J Orofac Orthop, 2018 May;79(3):169-179.
    PMID: 29644389 DOI: 10.1007/s00056-018-0134-4
    OBJECTIVE: Accelerated bone-borne expansion protocols on sutural separation and sutural bone formation were evaluated via histomorphometry and immunohistochemistry to determine the optimal initial activation without disruption of bone formation.

    MATERIALS AND METHODS: Sixteen New Zealand white rabbits were randomly divided into four groups. Modified Hyrax expanders were placed across the midsagittal sutures and secured with miniscrew implants with the following activations: group 1 (control), 0.5 mm expansion/day for 12 days; group 2, 1 mm instant expansion followed by 0.5 mm expansion/day for 10 days; group 3, 2.5 mm instant expansion followed by 0.5 mm expansion/day for 7 days; and group 4, 4 mm instant expansion followed by 0.5 mm expansion/day for 4 days. After 6 weeks, sutural expansion and new bone formation were evaluated histomorphometrically. Statistical analysis was performed using Kruskal-Wallis/Mann-Whitney U tests and Spearman's rho correlation (p 

    Matched MeSH terms: Osteogenesis/physiology*
  9. Lau SF, Hazewinkel HA, Grinwis GC, Wolschrijn CF, Siebelt M, Vernooij JC, et al.
    Vet J, 2013 Sep;197(3):731-8.
    PMID: 23746870 DOI: 10.1016/j.tvjl.2013.04.021
    Medial coronoid disease (MCD) is a common joint disease of dogs. It has a multifactorial aetiology, but the relationship between known causal factors and the disease has yet to be elucidated. As most of the published literature is clinical and it reports changes associated with advanced disease, it is not known whether the changes reflect the cause or consequences of the condition. The aim of this study was to investigate early micromorphological changes occurring in articular cartilage and to describe the postnatal development of the medial coronoid process (MCP) before MCD develops. Three litters of MCD-prone young Labrador retrievers were purpose-bred from a dam and two sires with MCD. Comparisons of the micromorphological appearance of the MCP in MCD-negative and MCD-positive joints demonstrated that MCD was initially associated with a disturbance of endochondral ossification, namely a delay in the calcification of the calcifying zone, without concurrent abnormalities in the superficial layers of the joint cartilage. Cartilage canals containing patent blood vessels were only detected in dogs <12 weeks old, but the role of these channels in impaired ossification requires further investigation. Retained hyaline cartilage might ossify as the disease progresses, but weak areas can develop into cracks between the retained cartilage and the subchondral bone, leading to cleft formation and fragmentation of the MCP.
    Matched MeSH terms: Osteogenesis/physiology*
  10. Abdullah B, Shibghatullah AH, Hamid SS, Omar NS, Samsuddin AR
    Cell Tissue Bank, 2009 Aug;10(3):205-13.
    PMID: 18975136 DOI: 10.1007/s10561-008-9111-2
    This study was performed to determine the microscopic biological response of human nasal septum chondrocytes and human knee articular chondrocytes placed on a demineralized bovine bone scaffold. Both chondrocytes were cultured and seeded onto the bovine bone scaffold with seeding density of 1 x 105 cells per 100 microl/scaffold and incubated for 1, 2, 5 and 7 days. Proliferation and viability of the cells were measured by mitochondrial dehydrogenase activity (MTT assay), adhesion study was analyzed by scanning electron microscopy and differentiation study was analyzed by immunofluorescence staining and confocal laser scanning electron microscopy. The results showed good proliferation and viability of both chondrocytes on the scaffolds from day 1 to day 7. Both chondrocytes increased in number with time and readily grew on the surface and into the open pores of the scaffold. Immunofluorescence staining demonstrated collagen type II on the scaffolds for both chondrocytes. The results showed good cells proliferation, attachment and maturity of the chondrocytes on the demineralized bovine bone scaffold. The bovine bone being easily resourced, relatively inexpensive and non toxic has good potential for use as a three dimensional construct in cartilage tissue engineering.
    Matched MeSH terms: Osteogenesis/physiology*
  11. Ng AM, Kojima K, Kodoma S, Ruszymah BH, Aminuddin BS, Vacanti AC
    Med J Malaysia, 2008 Jul;63 Suppl A:121-2.
    PMID: 19025015
    Bone marrow derived progenitor cells have been widely studied for its multipotent property and have proofed to be an important resource in regenerative medicine. However, the propagation of murine bone marrow appeared to be a great challenge as compared to other mammalian species. In this study, various isolation techniques and the plasticity of the isolated cells were evaluated. Our result shows that magnetic sorting technique yielded the most viable cells and displayed wider differentiation capacity.
    Matched MeSH terms: Osteogenesis/physiology*
  12. Krishnamurithy G, Murali MR, Hamdi M, Abbas AA, Raghavendran HB, Kamarul T
    Regen Med, 2015;10(5):579-90.
    PMID: 26237702 DOI: 10.2217/rme.15.27
    To compare the effect of bovine bone derived porous hydroxyapatite (BDHA) scaffold on proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells (hMSCs) compared with commercial hydroxyapatite (CHA) scaffold.
    Matched MeSH terms: Osteogenesis/physiology*
  13. Safwani WK, Makpol S, Sathapan S, Chua KH
    Cell Tissue Bank, 2013 Jun;14(2):289-301.
    PMID: 22476937 DOI: 10.1007/s10561-012-9309-1
    Adipose tissue is a source of multipotent stem cells and it has the ability to differentiate into several types of cell lineages such as neuron cells, osteogenic and adipogenic cells. Most studies on human adipose-derived stem cells (ASCs) have been carried out at the early passages. For clinical usage, ASCs need to be expanded in vitro for a period of time to get sufficient cells for transplantation into patients. However, the impact of long-term culture on ASCs molecular characteristics has not been established yet. Several studies have also shown that osteogenic and adipogenic cells have the ability to switch pathways during in vitro culture as they share the same progenitor cells. This data is important to ensure their functionality and efficacy before being used clinically in the treatment of bone diseases. Therefore, we aim to investigate the effect of long-term culture on the adipogenic, stemness and osteogenic genes expression during osteogenic induction of ASCs. In this study, the molecular characteristics of ASCs during osteogenic induction in long-term culture was analysed by observing their morphological changes during induction, analysis of cell mineralization using Alizarin Red staining and gene expression changes using quantitative RT-PCR. Morphologically, cell mineralization at P20 was less compared to P5, P10 and P15. Adipogenesis was not observed as negative lipid droplets formation was recorded during induction. The quantitative PCR data showed that adipogenic genes expression e.g. LPL and AP2 decreased but PPAR-γ was increased after osteogenic induction in long-term culture. Most stemness genes decreased at P5 and P10 but showed no significant changes at P15 and P20. While most osteogenic genes increased after osteogenic induction at all passages. When compared among passages after induction, Runx showed a significant increased at P20 while BSP, OSP and ALP decreased at later passage (P15 and P20). During long-term culture, ASCs were only able to differentiate into immature osteogenic cells.
    Matched MeSH terms: Osteogenesis/physiology*
  14. Chong PP, Selvaratnam L, Abbas AA, Kamarul T
    J Orthop Res, 2012 Apr;30(4):634-42.
    PMID: 21922534 DOI: 10.1002/jor.21556
    The use of mesenchymal stem cells (MSCs) for cartilage repair has generated much interest owing to their multipotentiality. However, their significant presence in peripheral blood (PB) has been a matter of much debate. The objectives of this study are to isolate and characterize MSCs derived from PB and, compare their chondrogenic potential to MSC derived from bone marrow (BM). PB and BM derived MSCs from 20 patients were isolated and characterized. From 2 ml of PB and BM, 5.4 ± 0.6 million and 10.5 ± 0.8 million adherent cells, respectively, were obtained by cell cultures at passage 2. Both PB and BM derived MSCs were able to undergo tri-lineage differentiation and showed negative expression of CD34 and CD45, but positively expressed CD105, CD166, and CD29. Qualitative and quantitative examinations on the chondrogenic potential of PB and BM derived MSCs expressed similar cartilage specific gene (COMP) and proteoglycan levels, respectively. Furthermore, the s-GAG levels expressed by chondrogenic MSCs in cultures were similar to that of native chondrocytes. In conclusion, this study demonstrates that MSCs from PB maintain similar characteristics and have similar chondrogenic differentiation potential to those derived from BM, while producing comparable s-GAG expressions to chondrocytes.
    Matched MeSH terms: Osteogenesis/physiology
  15. Samsulrizal N, Goh YM, Ahmad H, Md Dom S, Azmi NS, NoorMohamad Zin NS, et al.
    Pharm Biol, 2021 Dec;59(1):66-73.
    PMID: 33399485 DOI: 10.1080/13880209.2020.1865411
    CONTEXT: Diabetes mellitus increases the risk of bone diseases including osteoporosis and osteoarthritis. We have previously demonstrated that Ficus deltoidea Jack (Moraceae) is capable of reducing hyperglycaemia. However, whether F. deltoidea could protect against diabetic osteoporosis remains to be determined.

    OBJECTIVE: The study examines the effect of F. deltoidea on bone histomorphometric parameters, oxidative stress, and turnover markers in diabetic rats.

    MATERIALS AND METHODS: Streptozotocin (STZ)-induced diabetic Sprague-Dawley rats (n = 6 animals per group) received one of the following treatments via gavage for 8 weeks: saline (diabetic control), metformin (1000 mg/kg bwt), and methanol leaves extract of F. deltoidea (1000 mg/kg bwt). A group of healthy rats served as normal control. The femoral bones were excised and scanned ex vivo using micro-computed tomography (micro-CT) for histomorphometric analysis. The serum levels of insulin, oxidative stress, and bone turnover markers were determined by ELISA assays.

    RESULTS: Treatment of diabetic rats with F. deltoidea could significantly increase bone mineral density (BMD) (from 526.98 ± 11.87 to 637.74 ± 3.90). Higher levels of insulin (2.41 ± 0.08 vs. 1.58 ± 0.16), osteocalcin (155.66 ± 4.11 vs. 14.35 ± 0.97), and total bone n-3 PUFA (2.34 ± 0.47 vs. 1.44 ± 0.18) in parallel with the presence of chondrocyte hypertrophy were also observed following F. deltoidea treatment compared to diabetic control.

    CONCLUSIONS: F. deltoidea could prevent diabetic osteoporosis by enhancing osteogenesis and inhibiting bone oxidative stress. These findings support the potential use of F. deltoidea for osteoporosis therapy in diabetes.

    Matched MeSH terms: Osteogenesis/physiology
  16. Lim J, Razi ZR, Law J, Nawi AM, Idrus RB, Ng MH
    Cytotherapy, 2016 12;18(12):1493-1502.
    PMID: 27727016 DOI: 10.1016/j.jcyt.2016.08.003
    BACKGROUND AIMS: Human Wharton's jelly-derived mesenchymal stromal cells (hWJMSCs) are possibly the most suitable allogeneic cell source for stromal cell therapy and tissue engineering applications because of their hypo-immunogenic and non-tumorigenic properties, easy availability and minimal ethical concerns. Furthermore, hWJMSCs possess unique properties of both adult mesenchymal stromal cells and embryonic stromal cells. The human umbilical cord (UC) is approximately 50-60 cm long and the existing studies in the literature have not provided information on which segment of the UC was studied. In this study, hWJMSCs derived from three anatomical segments of the UC are compared.

    METHODS: Three segments of the whole UC, each 3 cm in length, were identified anatomically as the maternal, middle and fetal segments. The hWJMSCs from the different segments were analyzed via trypan blue exclusion assay to determine the growth kinetics and cell viability, flow cytometry for immunophenotyping and immunofluorescence and reverse transcriptase polymerase chain reaction (RT-PCR) for expression of stromal cell transcriptional factors. Furthermore, the trilineage differentiation potential (osteogenic, adipogenic and chondrogenic) of these cells was also assessed.

    RESULTS: hWJMSCs isolated from the maternal and fetal segments displayed greater viability and possessed a significantly higher proliferation rate compared with cells from the middle segment. Immunophenotyping revealed that hWJMSCs derived from all three segments expressed the MSC markers CD105, CD73, CD90, CD44, CD13 and CD29, as well as HLA-ABC and HLA-DR, but were negative for hematopoietic markers CD14, CD34 and CD45. Analysis of the embryonic markers showed that all three segments expressed Nanog and Oct 3/4, but only the maternal and fetal segments expressed SSEA 4 and TRA-160. Cells from all three segments were able to differentiate into chondrogenic, osteogenic and adipogenic lineages with the middle segments showing much lower differentiation potential compared with the other two segments.

    CONCLUSIONS: hWJMSCs derived from the maternal and fetal segments of the UC are a good source of MSCs compared with cells from the middle segment because of their higher proliferation rate and viability. Fetal and maternal segments are the preferred cell source for bone regeneration.

    Matched MeSH terms: Osteogenesis/physiology*
  17. Mohammadi H, Sepantafar M
    Iran Biomed J, 2016 Sep;20(4):189-200.
    PMID: 26979401
    Titanium and its alloy are known as important load-bearing biomaterials. The major drawbacks of these metals are fibrous formation and low corrosion rate after implantation. The surface modification of biomedical implants through various methods such as plasma spray improves their osseointegration and clinical lifetime. Different materials have been already used as coatings on biomedical implant, including calcium phosphates and bioglass. However, these materials have been reported to have limited clinical success. The excellent bioactivity of calcium silicate (Ca-Si) has been also regarded as coating material. However, their high degradation rate and low mechanical strength limit their further coating application. Trace element modification of (Ca-Si) bioceramics is a promising method, which improves their mechanical strength and chemical stability. In this review, the potential of trace element-modified silicate coatings on better bone formation of titanium implant is investigated.
    Matched MeSH terms: Osteogenesis/physiology*
  18. Alkaisi A, Ismail AR, Mutum SS, Ahmad ZA, Masudi S, Abd Razak NH
    J Oral Maxillofac Surg, 2013 Oct;71(10):1758.e1-13.
    PMID: 24040948 DOI: 10.1016/j.joms.2013.05.016
    The main aim of the present study was to evaluate the capacity of stem cells from human exfoliated deciduous teeth (SHED) to enhance mandibular distraction osteogenesis (DO) in rabbits.
    Matched MeSH terms: Osteogenesis/physiology*
  19. Takebe Y, Tsujigiwa H, Katase N, Siar CH, Takabatake K, Fujii M, et al.
    J Oral Pathol Med, 2017 Jan;46(1):67-75.
    PMID: 27327904 DOI: 10.1111/jop.12467
    BACKGROUND: Tumor parenchyma-stromal interactions affect the properties of tumors and their dynamics. Our group previously showed that secreted frizzled related protein (sFRP)-2 impairs bone formation and promotes bone invasion in ameloblastoma. However, the effects of the secreted growth factors CCN2, TGF-β, and BMP4 on stromal tissues in ameloblastoma remain unclear.

    MATERIALS AND RESULTS: Thirty-five paraffin-embedded ameloblastoma cases, ameloblastoma-derived cell lines (AM-1), and primary cultures of ameloblastoma stromal fibroblasts (ASF) were used. Immunohistochemistry, MTT assay, Western blotting, and RT-PCR were performed on these samples. Parenchyma-stromal CCN2 overexpression correlated significantly with fibrous-type stroma, but not with myxoid-type stroma, suggesting a role of CCN2 in fibrosis (P < 0.05). Recombinant CCN2 induction of enhanced ASF proliferation in AM-1 medium supports this view. Conversely, BMP4 and TGF-β were expressed in myxoid-type fibroblasts, but little expression was found in parenchyma. RANKL-positive and CD68-positive stromal cell populations were significantly greater in myxoid-type tumor areas than in fibrous-type tumor areas, while a higher Ki-67 labeling index was recorded in ameloblastoma with fibrous-type stroma. These data suggest that stromal properties influence bone resorption-related activities and growth rates, respectively.

    CONCLUSIONS: These results suggest that the effects of secreted growth factors are governed by ameloblastoma parenchyma-stromal interactions. CCN2 promotes fibrogenesis independent of TGF-β signaling. Absence of CCN2 expression is associated with a phenotypic switch to a myxoid-type microenvironment that is conducive for TGF-β/BMP4 signaling to promote osteoclastogenesis.

    Matched MeSH terms: Osteogenesis/physiology*
  20. Bang LT, Ramesh S, Purbolaksono J, Long BD, Chandran H, Ramesh S, et al.
    Biomed Mater, 2015 Aug;10(4):045011.
    PMID: 26225725 DOI: 10.1088/1748-6041/10/4/045011
    Interconnected porous tricalcium phosphate ceramics are considered to be potential bone substitutes. However, insufficient mechanical properties when using tricalcium phosphate powders remain a challenge. To mitigate these issues, we have developed a new approach to produce an interconnected alpha-tricalcium phosphate (α-TCP) scaffold and to perform surface modification on the scaffold with a composite layer, which consists of hybrid carbonate apatite / poly-epsilon-caprolactone (CO3Ap/PCL) with enhanced mechanical properties and biological performance. Different CO3Ap combinations were tested to evaluate the optimal mechanical strength and in vitro cell response of the scaffold. The α-TCP scaffold coated with CO3Ap/PCL maintained a fully interconnected structure with a porosity of 80% to 86% and achieved an improved compressive strength mimicking that of cancellous bone. The addition of CO3Ap coupled with the fully interconnected microstructure of the α-TCP scaffolds coated with CO3Ap/PCL increased cell attachment, accelerated proliferation and resulted in greater alkaline phosphatase (ALP) activity. Hence, our bone substitute exhibited promising potential for applications in cancellous bone-type replacement.
    Matched MeSH terms: Osteogenesis/physiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links