DESIGN: Cross-sectional.
SETTING: Jakarta, Indonesia and Kuala Lumpur, Malaysia.
PARTICIPANTS: A convenience sample of 504 non-pregnant women 18-40 years.
MAIN MEASURES: Plasma 25-hydroxyvitamin D and PTH.
RESULTS: The mean 25-hydroxyvitamin D concentration was 48 nmol/l. Less than 1% of women had a 25-hydroxyvitamin D concentration indicative of vitamin D deficiency (<17.5 nmol/l); whereas, over 60% of women had a 25-hydroxyvitamin D concentration indicative of insufficiency (<50 nmol/l). We estimate that 52 nmol/l was the threshold concentration for plasma 25-hydroxyvitamin D above which no further suppression of PTH occurred. Below and above this concentration the slopes of the regression lines were -0.18 (different from 0; P=0.003) and -0.01 (P=0.775), respectively. The relation between vitamin D status and parathyroid hormone concentration did not differ between women with low, medium or high calcium intakes (P=0.611); however, even in the highest tertile of calcium intake, mean calcium intake was only 657 mg/d.
CONCLUSION: On the basis of maximal suppression of PTH we estimate an optimal 25-hydroxyvitamin D concentration of approximately 50 nmol/l. Many women had a 25-hydroxyvitamin D below this concentration and may benefit from improved vitamin D status.
DESIGN: Serum intact parathormone (PTH) concentrations were measured on samples taken before and during a variable-rate tri-sodium citrate infusion designed to 'clamp' the whole blood ionised calcium concentration 0.20 mmol L-1 below baseline for 120 min.
SUBJECTS: Six Malaysian patients aged 17-42 years with acute malaria, four of whom were restudied in convalescence, and 12 healthy controls aged 19-36 years.
MAIN OUTCOME MEASURES: Whole-blood ionised calcium and serum intact PTH concentrations.
RESULTS: The mean (SD baseline ionised calcium was lower in the malaria patients than in controls (1.09 +/- 0.06 vs. 1.18 +/- 0.03 mmol L-1, respectively; P = 0.01) but PTH concentrations were similar (3.0 +/- 1.8 vs. 3.3 +/- 1.3 pmol L(-1); P = 0.33). Target whole-blood ionised calcium concentrations were achieved more rapidly in the controls than the patients (within 15 vs. 30 min) despite significantly more citrate being required in the patients (area under the citrate infusion-time curve 0.95 (0.25 vs. 0.57 +/- 0.09 mmol kg-1; P < 0.01). The ratio of the change in serum PTH to that in ionised calcium (delta PTH/ delta Ca2+), calculated to adjust for differences in initial rate of fall of ionised calcium, was similar during the first 5 min of the clamp (132 +/- 75 x 10(-6) vs. 131 +/- 43 x 10(-6) in patients and controls, respectively, P > 0.05), as were steady-state serum PTH levels during the second hour (7.0 +/- 2.2 pmol L-1 in each case). Convalescent patients had normal basal ionised calcium levels but the lowest serum intact PTH levels before and during the clamp, consistent with an increase in skeletal PTH sensitivity after treatment.
CONCLUSIONS: There is a decreased ionised calcium 'set point' for basal PTH secretion but a normal PTH response to acute hypocalcaemia in malaria. Skeletal resistance may attenuate the effects of the PTH response but patients with malaria appear relatively resistant to the calcium chelating effects of citrated blood products.
METHODS AND ANALYSIS: We outline the rationale and protocol for an international, multicentre, randomised parallel-group trial assessing the impact of the non-calcium-based phosphate binder, lanthanum carbonate, compared with placebo on surrogate markers of cardiovascular disease in a predialysis CKD population-the IM pact of P hosphate R eduction O n V ascular E nd-points (IMPROVE)-CKD study. The primary objective of the IMPROVE-CKD study is to determine if the use of lanthanum carbonate reduces the burden of cardiovascular disease in patients with CKD stages 3b and 4 when compared with placebo. The primary end-point of the study is change in arterial compliance measured by pulse wave velocity over a 96-week period. Secondary outcomes include change in aortic calcification and biochemical parameters of serum phosphate, parathyroid hormone and FGF-23 levels.
ETHICS AND DISSEMINATION: Ethical approval for the IMPROVE-CKD trial was obtained by each local Institutional Ethics Committee for all 17 participating sites in Australia, New Zealand and Malaysia prior to study commencement. Results of this clinical trial will be published in peer-reviewed journals and presented at conferences.
TRIAL REGISTRATION NUMBER: ACTRN12610000650099.
METHODS: One hundred and ninety-seven healthy women, aged 25 to 60, were selected from a hospital staff health screening program; 68% were Chinese, 18% Malay, and 14% Indian. P1NP, CTX, and 25-OHD(3) were measured using the Roche Cobas® electrochemiluminescence immunoassay. Serum PTH was measured using the Siemens ADVIA Centaur® immunoassay.
RESULTS: Sixty-five percent had 25-OHD(3) concentrations <50 nmol/l. Vitamin D insufficiency (25-OHD(3) < 50 nmol/l) was more prevalent in Malays (89%) and Indians (82%) compared to Chinese (56%). There was no correlation between vitamin D and age. PTH positively correlated with age, and Malays and Indians had higher PTH concentrations than Chinese. There was an inverse correlation between PTH and 25-OHD(3), but no threshold of 25-OHD(3) concentrations at which PTH plateaued. The bone turnover markers P1NP and CTX inversely correlated with age but were not different between ethnic groups. CTX and P1NP exhibited good correlation, however, there was no significant correlation between 25-OHD(3) or PTH concentrations and the bone turnover markers P1NP and CTX.
CONCLUSIONS: Healthy women in Singapore have a high prevalence of vitamin D insufficiency. Vitamin D insufficiency was more prevalent in Malays and Indians compared to Chinese.
EVIDENCE ACQUISITION: We conducted a meta-analysis to evaluate the relationship between primary aldosteronism (PA) with bone biochemical markers and to assess bone mineral density in patients with primary aldosteronism.
EVIDENCE SYNTHESIS: A total of 939 subjects were examined (37.5% with PA). Patients with PA had significantly higher serum parathyroid hormone, lower serum calcium, higher urine calcium excretion and higher serum alkaline phosphatase compared to patients without PA, with no significant difference in serum vitamin D between both groups. Bone mineral density of lumbar spine, femoral neck and total neck of femur were similar between two groups. With PA treatment, there was a significant increment in serum calcium and reduction in serum parathyroid hormone.
CONCLUSIONS: PA is associated with hypercalciuria with subsequent secondary hyperparathyroidism. This potentially affects bone health. We recommend this to be part of complication screening among patients with PA.
METHODS: To assess the effects of non-calcium-based phosphate binders on intermediate cardiovascular markers, we conducted a multicenter, double-blind trial, randomizing 278 participants with stage 3b or 4 CKD and serum phosphate >1.00 mmol/L (3.10 mg/dl) to 500 mg lanthanum carbonate or matched placebo thrice daily for 96 weeks. We analyzed the primary outcome, carotid-femoral pulse wave velocity, using a linear mixed effects model for repeated measures. Secondary outcomes included abdominal aortic calcification and serum and urine markers of mineral metabolism.
RESULTS: A total of 138 participants received lanthanum and 140 received placebo (mean age 63.1 years; 69% male, 64% White). Mean eGFR was 26.6 ml/min per 1.73 m2; 45% of participants had diabetes and 32% had cardiovascular disease. Mean serum phosphate was 1.25 mmol/L (3.87 mg/dl), mean pulse wave velocity was 10.8 m/s, and 81.3% had abdominal aortic calcification at baseline. At 96 weeks, pulse wave velocity did not differ significantly between groups, nor did abdominal aortic calcification, serum phosphate, parathyroid hormone, FGF23, and 24-hour urinary phosphate. Serious adverse events occurred in 63 (46%) participants prescribed lanthanum and 66 (47%) prescribed placebo. Although recruitment to target was not achieved, additional analysis suggested this was unlikely to have significantly affected the principle findings.
CONCLUSIONS: In patients with stage 3b/4 CKD, treatment with lanthanum over 96 weeks did not affect arterial stiffness or aortic calcification compared with placebo. These findings do not support the role of intestinal phosphate binders to reduce cardiovascular risk in patients with CKD who have normophosphatemia.
CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER: Australian Clinical Trials Registry, ACTRN12610000650099.
METHODS: One-hundred and twenty-one women (mean age 59 (± 4) years) were randomized into two groups: control (n = 60; regular milk, 428 mg calcium per day) or intervention (n = 61; fortified milk at 1200 mg calcium, 96 mg magnesium, 2.4 mg zinc, 15 μg vitamin D and 4 g FOS-inulin per day). At baseline, weeks 12, 24, 36 and 52, parathyroid hormone (PTH), C-Telopeptide of Type I Collagen (CTx-1), Procollagen I Intact N-Terminal propeptide (PINP) and vitamin D levels were assessed. Bone density (BMD) was measured at baseline and week 52 using a GE Lunar iDXA.
RESULTS: Body mass index, lumbar spine and femoral neck BMD did not differ between groups at baseline. Over 52 weeks, mean plasma 25 (OH) D3 levels increased to 74.8 nmol/L (intervention group) or remained at 63.1 nmol/L (control group) (p
METHODS: Predialysis CKD patients were included in this cross-sectional study. Patient demographics, medical/medication histories, and laboratory parameters (serum 25-hydroxyvitamin D (25(OH)D), creatinine, phosphate (P), calcium, albumin, and intact-PTH (i-PTH)) were collected and compared among patients with various CKD stages. The association between 25(OH)D and these parameters was determined by multiple linear regression.
RESULTS: A total of 196 patients with mean ± SD eGFR of 26.4 ± 11.2 mL/min/1.73 m2 was included. Vitamin D deficiency (25(OH)D concentration < 15 ng/mL) and insufficiency (25(OH)D concentration 16 - 30 ng/mL) was found in 29.1% and 57.7% of the patients, respectively. Mean ± SD serum 25(OH)D was 20.8 ± 9.3 ng/mL. Female patients had lower vitamin D concentrations than males (16.9 ng/mL vs. 23.9 ng/mL; p < 0.001). Vitamin D levels were also higher in Chinese (22.3 ng/mL) than Malay (17.3 ng/mL) and Indian (13.1 ng/mL) patients (p < 0.05). Nonadjusted analyses showed higher i-PTH concentration in vitamin D deficient patients (p < 0.05).
CONCLUSION: Despite being a sun-rich country all year round, the majority (86.8%) of predialysis CKD patients in Singapore have suboptimal vitamin D status. Lower vitamin D concentrations were found in females and in those with darker skin tone. Vitamin D deficient patients also tended to have higher i-PTH levels.
METHODS: Premenopausal women (n = 136, mean age 41 (±5) years) and postmenopausal women [n = 121, mean age 59 (±4) years] were recruited, and each age group randomised into two groups to take two glasses per day of control = regular milk (500 mg calcium per day) or intervention (Int) = fortified milk (1000 mg calcium for pre-M women and 1200 mg calcium for PM women, 96 mg magnesium, 2.4 mg zinc, 15 µg vitamin D, 4 g FOS-inulin per day). At baseline, week 4 and week 12 serum minerals and bone biochemical markers were measured and bone density was measured at baseline.
RESULTS: Mean 25-hydroxyvitamin D [25(OH) vitamin D3] levels among groups were between 49 and 65 nmol/L at baseline, and over the 12 weeks of supplementation, the fortified milk improved vitamin D status in both Int groups. CTx-1 and PINP reduced significantly in both Pre-M and PM groups over the 12 weeks, with the changes in CTx-1 being significantly different (P Parathyroid hormone levels were significantly reduced in all groups over time, except for control PM group where levels increased at 12 weeks.
CONCLUSION: The overall pattern of responses indicates that while both regular milk and fortified milk reduce bone resorption in young and older women, fortified milk is measurably more effective.