Displaying all 15 publications

Abstract:
Sort:
  1. Usman A, Razak IA, Chantrapromma S, Fun HK, Sarkar TK, Basak S, et al.
    Acta Crystallogr C, 2001 Sep;57(Pt 9):1116-7.
    PMID: 11588389
    In the title compound, C(16)H(19)ClN(2)O(4), the pyridine ring is nearly planar, the piperidine ring is non-planar and the cyclohexane ring adopts a screw-boat conformation. The carboxylate group makes a dihedral angle of 80.9 (2) degrees with the least-squares plane through the cyclohexane ring.
    Matched MeSH terms: Phenanthrolines/chemistry*
  2. Chikira M, Ng CH, Palaniandavar M
    Int J Mol Sci, 2015;16(9):22754-80.
    PMID: 26402668 DOI: 10.3390/ijms160922754
    The interaction of simple and ternary Cu(II) complexes of 1,10-phenanthrolines with DNA has been studied extensively because of their various interesting and important functions such as DNA cleavage activity, cytotoxicity towards cancer cells, and DNA based asymmetric catalysis. Such functions are closely related to the DNA binding modes of the complexes such as intercalation, groove binding, and electrostatic surface binding. A variety of spectroscopic methods have been used to study the DNA binding mode of the Cu(II) complexes. Of all these methods, DNA-fiber electron paramagnetic resonance (EPR) spectroscopy affords unique information on the DNA binding structures of the complexes. In this review we summarize the results of our DNA-fiber EPR studies on the DNA binding structure of the complexes and discuss them together with the data accumulated by using other measurements.
    Matched MeSH terms: Phenanthrolines
  3. Wong MT, Choi SB, Kuan CS, Chua SL, Chang CH, Normi YM, et al.
    Int J Mol Sci, 2012;13(1):901-17.
    PMID: 22312293 DOI: 10.3390/ijms13010901
    Klebsiella pneumoniae is a Gram-negative, cylindrical rod shaped opportunistic pathogen that is found in the environment as well as existing as a normal flora in mammalian mucosal surfaces such as the mouth, skin, and intestines. Clinically it is the most important member of the family of Enterobacteriaceae that causes neonatal sepsis and nosocomial infections. In this work, a combination of protein sequence analysis, structural modeling and molecular docking simulation approaches were employed to provide an understanding of the possible functions and characteristics of a hypothetical protein (KPN_02809) from K. pneumoniae MGH 78578. The computational analyses showed that this protein was a metalloprotease with zinc binding motif, HEXXH. To verify this result, a ypfJ gene which encodes for this hypothetical protein was cloned from K. pneumoniae MGH 78578 and the protein was overexpressed in Escherichia coli BL21 (DE3). The purified protein was about 32 kDa and showed maximum protease activity at 30 °C and pH 8.0. The enzyme activity was inhibited by metalloprotease inhibitors such as EDTA, 1,10-phenanthroline and reducing agent, 1,4-dithiothreitol (DTT). Each molecule of KPN_02809 protein was also shown to bind one zinc ion. Hence, for the first time, we experimentally confirmed that KPN_02809 is an active enzyme with zinc metalloprotease activity.
    Matched MeSH terms: Phenanthrolines/metabolism; Phenanthrolines/chemistry
  4. Setifi Z, Kwong HC, Tiekink ERT, Maris T, Setifi F
    Acta Crystallogr E Crystallogr Commun, 2020 Jun 01;76(Pt 6):835-840.
    PMID: 32523750 DOI: 10.1107/S2056989020006271
    The CoII atom in the title complex, [Co(SO4)(C12H8N2)(H2O)3] (or C12H14CoN2O7S), is octa-hedrally coordinated within a cis-N2O4 donor set defined by the chelating N-donors of the 1,10-phenanthroline ligand, sulfate-O and three aqua-O atoms, the latter occupying an octa-hedral face. In the crystal, supra-molecular layers lying parallel to (110) are sustained by aqua-O-H⋯O(sulfate) hydrogen bonding. The layers stack along the c-axis direction with the closest directional inter-action between them being a weak phenanthroline-C-H⋯O(sulfate) contact. There are four significant types of contact contributing to the calculated Hirshfeld surface: at 44.5%, the major contribution comes from O-H⋯O contacts followed by H⋯H (28.6%), H⋯C/C⋯H (19.5%) and C⋯C (5.7%) contacts. The dominance of the electrostatic potential force in the mol-ecular packing is also evident in the calculated energy frameworks. The title complex is isostructural with its manganese, zinc and cadmium containing analogues and isomeric with its mer-tri-aqua analogue.
    Matched MeSH terms: Phenanthrolines
  5. Yap VA, Loong BJ, Ting KN, Loh SH, Yong KT, Low YY, et al.
    Phytochemistry, 2015 Jan;109:96-102.
    PMID: 25468714 DOI: 10.1016/j.phytochem.2014.10.032
    Hispidacine, an 8,4'-oxyneolignan featuring incorporation of an unusual 2-hydroxyethylamine moiety at C-7, and hispiloscine, a phenanthroindolizidine alkaloid, were isolated from the stem-bark and leaves of the Malaysian Ficus hispida Linn. Their structures were established by spectroscopic analysis. Hispidacine induced a moderate vasorelaxant activity in rat isolated aorta, while hispiloscine showed appreciable antiproliferative activities against MDA-MB-231, MCF-7, A549, HCT-116 and MRC-5 cell lines.
    Matched MeSH terms: Phenanthrolines/isolation & purification; Phenanthrolines/chemistry
  6. Chin LF, Kong SM, Seng HL, Tiong YL, Neo KE, Maah MJ, et al.
    J Biol Inorg Chem, 2012 Oct;17(7):1093-105.
    PMID: 22825726 DOI: 10.1007/s00775-012-0923-y
    Two ternary Zn(II) complexes, with 1,10-phenanthroline (phen) as the main ligand and a carboxylate-containing ligand [dipicolinate (dipico) or L-threoninate (L-Thr)] as the subsidiary ligand, were prepared and characterized by elemental analysis, Fourier transform IR, UV, and fluorescence spectroscopy, X-ray diffraction, molar conductivity, and electrospray ionization mass spectrometry. X-ray structure analysis shows that both [Zn(phen)(dipico)(H(2)O)]·H(2)O (1) and [Zn(phen)(L-Thr)(H(2)O)Cl]·2H(2)O (2) have octahedral geometry about the Zn(II) atom. Both complexes can inhibit topoisomerase I, and have better anticancer activity than cisplatin against nasopharyngeal cancer cell lines, HK1 and HONE-1, with concentrations causing 50 % inhibition of cell proliferation (IC(50)) in the low micromolar range. Complex 2 has the highest therapeutic index for HK1. Both Zn(II) complexes can induce cell death by apoptosis. Changing the subsidiary ligand in the Zn(II) complexes affects the UV-fluorescence spectral properties of the coordinated phen ligand, the binding affinity for some DNA sequences, nucleobase sequence-selective binding, the phase at which cell cycle progression was arrested for treated cancer cells, and their therapeutic index.
    Matched MeSH terms: Phenanthrolines/pharmacology; Phenanthrolines/chemistry*
  7. Seng HL, Ong HK, Rahman RN, Yamin BM, Tiekink ER, Tan KW, et al.
    J Inorg Biochem, 2008 Nov;102(11):1997-2011.
    PMID: 18778856 DOI: 10.1016/j.jinorgbio.2008.07.015
    The binding selectivity of the M(phen)(edda) (M=Cu, Co, Ni, Zn; phen=1,10-phenanthroline, edda=ethylenediaminediacetic acid) complexes towards ds(CG)(6), ds(AT)(6) and ds(CGCGAATTCGCG) B-form oligonucleotide duplexes were studied by CD spectroscopy and molecular modeling. The binding mode is intercalation and there is selectivity towards AT-sequence and stacking preference for A/A parallel or diagonal adjacent base steps in their intercalation. The nucleolytic properties of these complexes were investigated and the factors affecting the extent of cleavage were determined to be: concentration of complex, the nature of metal(II) ion, type of buffer, pH of buffer, incubation time, incubation temperature, and the presence of hydrogen peroxide or ascorbic acid as exogenous reagents. The fluorescence property of these complexes and its origin were also investigated. The crystal structure of the Zn(phen)(edda) complex is reported in which the zinc atom displays a distorted trans-N(4)O(2) octahedral geometry; the crystal packing features double layers of complex molecules held together by extensive hydrogen bonding that inter-digitate with adjacent double layers via pi...pi interactions between 1,10-phenanthroline residues. The structure is compared with that of the recently described copper(II) analogue and, with the latter, included in molecular modeling.
    Matched MeSH terms: Phenanthrolines/chemistry*
  8. Ng CH, Tan TH, Tioh NH, Seng HL, Ahmad M, Ng SW, et al.
    J Inorg Biochem, 2021 07;220:111453.
    PMID: 33895694 DOI: 10.1016/j.jinorgbio.2021.111453
    The cobalt(II), copper(II) and zinc(II) complexes of 1,10-phenanthroline (phen) and maltol (mal) (complexes 1, 2, 3 respectively) were prepared from their respective metal(II) chlorides and were characterized by FT-IR, elemental analysis, UV spectroscopy, molar conductivity, p-nitrosodimethylaniline assay and mass spectrometry. The X-ray structure of a single crystal of the zinc(II) analogue reveals a square pyramidal structure with distinctly shorter apical chloride bond. All complexes were evaluated for their anticancer property on breast cancer cell lines MCF-7 and MDA-MB-231, and normal cell line MCF-10A, using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and morphological studies. Complex 2 was most potent for 24, 48 and 72 h treatment of cancer cells but it was not selective towards cancer over normal cells. The mechanistic studies of the cobalt(II) complex 1 involved apoptosis assay, cell cycle analysis, dichloro-dihydro-fluorescein diacetate assay, intracellular reactive oxygen species assay and proteasome inhibition assay. Complex 1 induced low apoptosis, generated low level of ROS and did not inhibit proteasome in normal cells. The study of the DNA binding and nucleolytic properties of complexes 1-3 in the absence or presence of H2O2 or sodium ascorbate revealed that only complex 1 was not nucleolytic.
    Matched MeSH terms: Phenanthrolines/chemical synthesis; Phenanthrolines/pharmacology*
  9. Ng CH, Chan CW, Lai JW, Ooi IH, Chong KV, Maah MJ, et al.
    J Inorg Biochem, 2016 07;160:1-11.
    PMID: 27105312 DOI: 10.1016/j.jinorgbio.2016.04.003
    Like chiral organic drugs, the chemical and biological properties of metal complexes can be dependent on chirality. Two pairs of [Cu(phen)(ala)(H2O)]X·xH2O (phen=1.10-phenanthroline: X=NO3(-); ala: l-alanine (l-ala), 1 and d-alanine (d-ala) 2; and (X=Cl(-); ala: l-ala, 3 and d-ala, 4) complex salts (x=number of lattice water molecules) have been synthesized and characterized. The crystal structure of 3 has been determined. The same pair of enantiomeric species, viz. [Cu(phen)(l-ala)(H2O)](+) and [Cu(phen)(d-ala)(H2O)](+), have been identified to be present in the aqueous solutions of both 1 and 3, and in those of both 2 and 4 respectively. Both 3 and 4 bind more strongly to ds(AT)6 than ds(CG)6. There is no or insignificant effect of the chirality of 3 and 4 on the production of hydroxyl radicals, binding to deoxyribonucleic acid from calf thymus (CT-DNA), ds(CG)6, G-quadruplex and 17-base pair duplex, and inhibition of both topoisomerase I and proteasome. Among the three proteasome proteolytic sites, the trypsin-like site is inhibited most strongly by these complexes. However, the chirality of 3 and 4 does affect the number of restriction enzymes inhibited, and their binding constants towards ds(AT)6 and serum albumin.
    Matched MeSH terms: Phenanthrolines/chemistry
  10. Harun SN, Ahmad H, Lim HN, Chia SL, Gill MR
    Pharmaceutics, 2021 Jan 24;13(2).
    PMID: 33498795 DOI: 10.3390/pharmaceutics13020150
    The ruthenium polypyridyl complex [Ru(dppz)2PIP]2+ (dppz: dipyridophenazine, PIP: (2-(phenyl)-imidazo[4,5-f ][1,10]phenanthroline), or Ru-PIP, is a potential anticancer drug that acts by inhibiting DNA replication. Due to the poor dissolution of Ru-PIP in aqueous media, a drug delivery agent would be a useful approach to overcome its limited bioavailability. Mesoporous silica nanoparticles (MSNs) were synthesized via a co-condensation method by using a phenanthrolinium salt with a 16 carbon length chain (Phen-C16) as the template. Optimization of the synthesis conditions by Box-Behnken design (BBD) generated MSNs with high surface area response at 833.9 m2g-1. Ru-PIP was effectively entrapped in MSNs at 18.84%. Drug release profile analysis showed that Ru-PIP is gradually released, with a cumulative release percentage of approximately 50% at 72 h. The release kinetic profile implied that Ru-PIP was released from MSN by diffusion. The in vitro cytotoxicity of Ru-PIP, both free and MSN-encapsulated, was studied in Hela, A549, and T24 cancer cell lines. While treatment of Ru-PIP alone is moderately cytotoxic, encapsulated Ru-PIP exerted significant cytotoxicity upon all the cell lines, with half maximal inhibitory concentration (IC50) values determined by MTT (([3-(4,5-dimethylthiazol-2-yl)-2,5-dephenyltetrazolium bromide]) assay at 48 h exposure substantially decreasing from >30 µM to <10 µM as a result of MSN encapsulation. The mechanistic potential of cytotoxicity on cell cycle distribution showed an increase in G1/S phase populations in all three cell lines. The findings indicate that MSN is an ideal drug delivery agent, as it is able to sustainably release Ru-PIP by diffusion in a prolonged treatment period.
    Matched MeSH terms: Phenanthrolines
  11. Ting T, Crouse K, Ahmad H
    Sains Malaysiana, 2015;44:619-628.
    Three novel ruthenium(II) complexes of the general formula [Ru(II)(bpy)2
    L]2+ were synthesized, where L =
    1,10-phenanthroline derivatives of position 2 imidazole having 3,4-didecyloxy-phenyl (ddip), 3,4-ditetradecyloxy-phenyl
    (dtip) and 3,4-dihexadecyloxy-phenyl (dhip). All complexes were characterized by elemental analysis, 1
    H-NMR and ESI-MS.
    Their photophysical properties have also been studied by UV-visible spectroscopy and fluorescence spectroscopy. The
    complexes exhibit Ru(II) metal centered emission at approximately 610 nm in acetonitrile solution at room temperature. DNA
    binding studies were carried out by UV-visible titration, luminescence titration and viscosity studies. The results indicated
    that [Ru(bpy)2
    (ddip)]2+ binds to CT-DNA by partial intercalation mode, while [Ru(bpy)2
    (dtip)]2+ and [Ru(bpy)2
    (dhip)]2+
    bind intercalatively via extended ligands.
    Matched MeSH terms: Phenanthrolines
  12. Seng HL, Von ST, Tan KW, Maah MJ, Ng SW, Rahman RN, et al.
    Biometals, 2010 Feb;23(1):99-118.
    PMID: 19787298 DOI: 10.1007/s10534-009-9271-y
    Crystal structure analysis of the zinc complex establishes it as a distorted octahedral complex, bis(3-methylpicolinato-kappa(2) N,O)(2)(1,10-phenanthroline-kappa(2) N,N)-zinc(II) pentahydrate, [Zn(3-Me-pic)(2)(phen)]x5H(2)O. The trans-configuration of carbonyl oxygen atoms of the carboxylate moieties and orientation of the two planar picolinate ligands above and before the phen ligand plane seems to confer DNA sequence recognition to the complex. It cannot cleave DNA under hydrolytic condition but can slightly be activated by hydrogen peroxide or sodium ascorbate. Circular Dichroism and Fluorescence spectroscopic analysis of its interaction with various duplex polynucleotides reveals its binding mode as mainly intercalation. It shows distinct DNA sequence binding selectivity and the order of decreasing selectivity is ATAT > AATT > CGCG. Docking studies lead to the same conclusion on this sequence selectivity. It binds strongly with G-quadruplex with human tolemeric sequence 5'-AG(3)(T(2)AG(3))(3)-3', can inhibit topoisomerase I efficiently and is cytotoxic against MCF-7 cell line.
    Matched MeSH terms: Phenanthrolines/chemistry
  13. Al-Khdhairawi AAQ, Krishnan P, Mai CW, Chung FF, Leong CO, Yong KT, et al.
    J Nat Prod, 2017 10 27;80(10):2734-2740.
    PMID: 28926237 DOI: 10.1021/acs.jnatprod.7b00500
    Tengerensine (1), isolated as a racemate and constituted from a pair of bis-benzopyrroloisoquinoline enantiomers, and tengechlorenine (2), purified as a scalemic mixture and constituted from a pair of chlorinated phenanthroindolizidine enantiomers, were isolated from the leaves of Ficus fistulosa var. tengerensis, along with three other known alkaloids. The structures of 1 and 2 were determined by spectroscopic data interpretation and X-ray diffraction analysis. The enantiomers of 1 were separated by chiral-phase HPLC, and the absolute configurations of (+)-1 and (-)-1 were established via experimental and calculated ECD data. Compound 1 is notable in being a rare unsymmetrical cyclobutane adduct and is the first example of a dimeric benzopyrroloisoquinoline alkaloid, while compound 2 represents the first naturally occurring halogenated phenanthroindolizidine alkaloid. Compound (+)-1 displayed a selective in vitro cytotoxic effect against MDA-MB-468 cells (IC50 7.4 μM), while compound 2 showed pronounced in vitro cytotoxic activity against all three breast cancer cell lines tested (MDA-MB-468, MDA-MB-231, and MCF7; IC50 values of 0.038-0.91 μM).
    Matched MeSH terms: Phenanthrolines/chemistry
  14. Chin LF, Kong SM, Seng HL, Khoo KS, Vikneswaran R, Teoh SG, et al.
    J Inorg Biochem, 2011 Mar;105(3):339-47.
    PMID: 21421121 DOI: 10.1016/j.jinorgbio.2010.11.018
    The synthesis and characterization of two cobalt(II) complexes, Co(phen)(ma)Cl 1 and Co(ma)(2)(phen) 2, (phen=1,10-phenanthroline, ma(-)=maltolate or 2-methyl-4-oxo-4H-pyran-3-olate) are reported herein. The complexes have been characterized by FTIR, CHN analysis, fluorescence spectroscopy, UV-visible spectroscopy, conductivity measurement and X-ray crystallography. The number of chelated maltolate ligands seems to influence their DNA recognition, topoisomerase I inhibition and antiproliferative properties.
    Matched MeSH terms: Phenanthrolines/chemistry*
  15. Von ST, Seng HL, Lee HB, Ng SW, Kitamura Y, Chikira M, et al.
    J Biol Inorg Chem, 2012 Jan;17(1):57-69.
    PMID: 21833656 DOI: 10.1007/s00775-011-0829-0
    By inhibiting only two or three of 12 restriction enzymes, the series of [M(phen)(edda)] complexes [M(II) is Cu, Co, Zn; phen is 1,10-phenanthroline; edda is N,N'-ethylenediaminediacetate] exhibit DNA binding specificity. The Cu(II) and Zn(II) complexes could differentiate the palindromic sequences 5'-CATATG-3' and 5'-GTATAC-3', whereas the Co(II) analogue could not. This and other differences in their biological properties may arise from distinct differences in their octahedral structures. The complexes could inhibit topoisomerase I, stabilize or destabilize G-quadruplex, and lower the mitochondrial membrane potential of MCF7 breast cells. The pronounced stabilization of G-quadruplex by the Zn(II) complex may account for the additional ability of only the Zn(II) complex to induce cell cycle arrest in S phase. On the basis of the known action of anticancer compounds against the above-mentioned individual targets, we suggest the mode of action of the present complexes could involve multiple targets. Cytotoxicity studies with MCF10A and cisplatin-resistant MCF7 suggest that these complexes exhibit selectivity towards breast cancer cells over normal ones.
    Matched MeSH terms: Phenanthrolines/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links