Displaying all 19 publications

Abstract:
Sort:
  1. Lau YL, Lai MY, Anthony CN, Chang PY, Palaeya V, Fong MY, et al.
    Am J Trop Med Hyg, 2015 Jan;92(1):28-33.
    PMID: 25385862 DOI: 10.4269/ajtmh.14-0309
    In this study, three molecular assays (real-time multiplex polymerase chain reaction [PCR], merozoite surface antigen gene [MSP]-multiplex PCR, and the PlasmoNex Multiplex PCR Kit) have been developed for diagnosis of Plasmodium species. In total, 52 microscopy-positive and 20 malaria-negative samples were used in this study. We found that real-time multiplex PCR was the most sensitive for detecting P. falciparum and P. knowlesi. The MSP-multiplex PCR assay and the PlasmoNex Multiplex PCR Kit were equally sensitive for diagnosing P. knowlesi infection, whereas the PlasmoNex Multiplex PCR Kit and real-time multiplex PCR showed similar sensitivity for detecting P. vivax. The three molecular assays displayed 100% specificity for detecting malaria samples. We observed no significant differences between MSP-multiplex PCR and the PlasmoNex multiplex PCR kit (McNemar's test: P = 0.1489). However, significant differences were observed comparing real-time multiplex PCR with the PlasmoNex Multiplex PCR Kit (McNemar's test: P = 0.0044) or real-time multiplex PCR with MSP-multiplex PCR (McNemar's test: P = 0.0012).
    Matched MeSH terms: Plasmodium/genetics
  2. Lau YL, Lai MY, Fong MY, Jelip J, Mahmud R
    Am J Trop Med Hyg, 2016 Feb;94(2):336-339.
    PMID: 26598573 DOI: 10.4269/ajtmh.15-0569
    The lack of rapid, affordable, and accurate diagnostic tests represents the primary hurdle affecting malaria surveillance in resource- and expertise-limited areas. Loop-mediated isothermal amplification (LAMP) is a sensitive, rapid, and cheap diagnostic method. Five species-specific LAMP assays were developed based on 18S rRNA gene. Sensitivity and specificity of LAMP results were calculated as compared with microscopic examination and nested polymerase chain reaction. LAMP reactions were highly sensitive with the detection limit of one copy for Plasmodium vivax, Plasmodium falciparum, and Plasmodium malariae and 10 copies for Plasmodium knowlesi and Plasmodium ovale. LAMP positively detected all human malaria species in all positive samples (N = 134; sensitivity = 100%) within 35 minutes. All negative samples were not amplified by LAMP (N = 67; specificity = 100%). LAMP successfully detected two samples with very low parasitemia. LAMP may offer a rapid, simple, and reliable test for the diagnosis of malaria in areas where malaria is prevalent.
    Matched MeSH terms: Plasmodium/genetics*
  3. Chong WC, Basir R, Fei YM
    Asian Pac J Trop Med, 2013 Feb;6(2):85-94.
    PMID: 23339908 DOI: 10.1016/S1995-7645(13)60001-2
    Malaria is an intra-cellular parasitic protozoon responsible for millions of deaths annually. Host and parasite genetic factors are crucial in affecting susceptibility to malaria and progression of the disease. Recent increased deployment of vector controls and new artemisinin combination therapies have dramatically reduced the mortality and morbidity of malaria worldwide. However, the gradual emergence of parasite and mosquito resistance has raised alarm regarding the effectiveness of current artemisinin-based therapies. In this review, mechanisms of anti-malarial drug resistance in the Plasmodium parasite and new genetically engineered tools of research priorities are discussed. The complexity of the parasite lifecycle demands novel interventions to achieve global eradication. However, turning laboratory discovered transgenic interventions into functional products entails multiple experimental phases in addition to ethical and safety hurdles. Uncertainty over the regulatory status and public acceptance further discourage the implementation of genetically modified organisms.
    Matched MeSH terms: Plasmodium/genetics*
  4. Kissinger JC, Collins WE, Li J, McCutchan TF
    J Parasitol, 1998 Apr;84(2):278-82.
    PMID: 9576499
    Plasmodium inui (Halberstaedter and von Prowazek, 1907), a malarial parasite of Old World monkeys that occurs in isolated pockets throughout the Celebes, Indonesia, Malaysia, and the Philippines, has traditionally been considered to be related more closely to Plasmodium malariae of humans (and its primate counterpart Plasmodium brasilianum), than to other primate Plasmodium species. This inference was made in part because of the similarities in the periodicities or duration of the asexual cycle in the blood, the extended sporogonic cycle, and the longer period of time for development of the pre-erythrocytic stages in the liver. Both P. inui and P. malariae have quartan (72 hr) periodicities associated with their asexual cycle, whereas other primate malarias, such as Plasmodium fragile and Plasmodium cynomolgi, are associated with tertian periodicities (48 hr), and Plasmodiumn knowlesi, with a quotidian (24 hr) periodicity. Phylogenetic analyses of portions of orthologous small subunit ribosomal genes reveal that P. inui is actually more closely related to the Plasmodium species of the "vivax-type" lineage than to P. malariae. Ribosomal sequence analysis of many different, geographically isolated, antigenically distinct P. inui isolates reveals that the isolates are nearly identical in sequence and thus members of the same species.
    Matched MeSH terms: Plasmodium/genetics
  5. Win SY, Chel HM, Hmoon MM, Htun LL, Bawm S, Win MM, et al.
    Acta Trop, 2020 Dec;212:105719.
    PMID: 32976841 DOI: 10.1016/j.actatropica.2020.105719
    Village chicken production, a traditional, small-scale, and extensive backyard poultry industry, has been profitable for local farmers in Myanmar. However, there is scanty information available concerning the infection of these chickens with avian pathogens, including haemoprotozoan parasites. In the present study, we provide the first report of microscopic detection and molecular identification of Leucocytozoon and Plasmodium parasites from seven different areas of Myanmar. Leucocytozoon gametocytes were detected in 17.6% (81/461) of the blood smears from village chickens. The nested polymerase chain reaction (PCR) for targeting Leucocytozoon mitochondrial cytochrome b (cyt b) genes had a 17.6% positive rate. Although the positive rate of nested PCR targeting Plasmodium/Haemoproteus cyt b was 34.3%, the PCR protocol was observed to possibly amplify DNA of a certain species of Leucocytozoon. There were no obvious clinical signs in the infected birds. Statistical analysis of the microscopic detection and PCR detection rates using the age and sex of birds as internal factors revealed that the statistical significances differed according to the study area. The sequencing of 32 PCR products obtained from each study area revealed infection by Leucocytozoon caulleryi in three birds, Leucocytozoon sabrazesi in two birds, Leucocytozoon schoutedeni in two birds, Leucocytozoon sp. in eighteen birds, and Plasmodium juxtanucleare in seven birds; however, Haemoproteus infection was not detected. While L. sabrazesi was detected in chickens from the central region of Myanmar, the other haemosporidians were detected in those from different areas. In the haplotype analysis, we detected 17 haemosporidian cyt b haplotypes, including two for L. caulleryi, one for L. sabrazesi, two for L. schoutedeni, nine for Leucocytozoon sp., and three for P. juxtanucleare. Phylogenetic analysis of the cyt b haplotypes revealed a considerably close genetic relationship among chicken haemosporidians detected in Myanmar, Thailand, and Malaysia. These results indicate that well-recognized widespread species of chicken Leucocytozoon and Plasmodium are distributed nationwide in Myanmar, providing new insights into the ecosystem and control strategies of haemosporidian parasites in domesticated chickens in Myanmar.
    Matched MeSH terms: Plasmodium/genetics
  6. Zhang X, Kadir KA, Quintanilla-Zariñan LF, Villano J, Houghton P, Du H, et al.
    Malar J, 2016 09 02;15(1):450.
    PMID: 27590474 DOI: 10.1186/s12936-016-1494-0
    BACKGROUND: Plasmodium knowlesi and Plasmodium cynomolgi are two malaria parasites naturally transmissible between humans and wild macaque through mosquito vectors, while Plasmodium inui can be experimentally transmitted from macaques to humans. One of their major natural hosts, the long-tailed macaque (Macaca fascicularis), is host to two other species of Plasmodium (Plasmodium fieldi and Plasmodium coatneyi) and is widely distributed in Southeast Asia. This study aims to determine the distribution of wild macaques infected with malarial parasites by examining samples derived from seven populations in five countries across Southeast Asia.

    METHODS: Plasmodium knowlesi, P. cynomolgi, P. coatneyi, P. inui and P. fieldi, were detected using nested PCR assays in DNA samples from 276 wild-caught long-tailed macaques. These samples had been derived from macaques captured at seven locations, two each in the Philippines (n = 68) and Indonesia (n = 70), and one each in Cambodia (n = 54), Singapore (n = 40) and Laos (n = 44). The results were compared with previous studies of malaria parasites in long-tailed macaques from other locations in Southeast Asia. Fisher exact test and Chi square test were used to examine the geographic bias of the distribution of Plasmodium species in the macaque populations.

    RESULTS: Out of 276 samples tested, 177 were Plasmodium-positive, with P. cynomolgi being the most common and widely distributed among all long-tailed macaque populations (53.3 %) and occurring in all populations examined, followed by P. coatneyi (20.4 %), P. inui (12.3 %), P. fieldi (3.4 %) and P. knowlesi (0.4 %). One P. knowlesi infection was detected in a macaque from Laos, representing the first documented case of P. knowlesi in wildlife in Laos. Chi square test showed three of the five parasites (P. knowlesi, P. coatneyi, P. cynomolgi) with significant bias in prevalence towards macaques from Malaysian Borneo, Cambodia, and Southern Sumatra, respectively.

    CONCLUSIONS: The prevalence of malaria parasites, including those that are transmissible to humans, varied among all sampled regional populations of long-tailed macaques in Southeast Asia. The new discovery of P. knowlesi infection in Laos, and the high prevalence of P. cynomolgi infections in wild macaques in general, indicate the strong need of public advocacy in related countries.

    Matched MeSH terms: Plasmodium/genetics
  7. Navien TN, Yeoh TS, Anna A, Tang TH, Citartan M
    World J Microbiol Biotechnol, 2021 Jul 09;37(8):131.
    PMID: 34240263 DOI: 10.1007/s11274-021-03097-0
    Mosquito-borne diseases are a major threat to public health. The shortcomings of diagnostic tools, especially those that are antibody-based, have been blamed in part for the rising annual morbidity and mortality caused by these diseases. Antibodies harbor a number of disadvantages that can be clearly addressed by aptamers as the more promising molecular recognition elements. Aptamers are defined as single-stranded DNA or RNA oligonucleotides generated by SELEX that exhibit high binding affinity and specificity against a wide variety of target molecules based on their unique structural conformations. A number of aptamers were developed against mosquito-borne pathogens such as Dengue virus, Zika virus, Chikungunya virus, Plasmodium parasite, Francisella tularensis, Japanese encephalitis virus, Venezuelan equine encephalitis virus, Rift Valley fever virus and Yellow fever virus. Intrigued by these achievements, we carry out a comprehensive overview of the aptamers developed against these mosquito-borne infectious agents. Characteristics of the aptamers and their roles in diagnostic, therapeutic as well as other applications are emphasized.
    Matched MeSH terms: Plasmodium/genetics*
  8. De Ang JX, Yaman K, Kadir KA, Matusop A, Singh B
    Sci Rep, 2021 Apr 08;11(1):7739.
    PMID: 33833272 DOI: 10.1038/s41598-021-86107-3
    Plasmodium knowlesi is the main cause of malaria in Sarawak, where studies on vectors of P. knowlesi have been conducted in only two districts. Anopheles balabacensis and An. donaldi were incriminated as vectors in Lawas and An. latens in Kapit. We studied a third location in Sarawak, Betong, where of 2169 mosquitoes collected over 36 days using human-landing catches, 169 (7.8%) were Anopheles spp. PCR and phylogenetic analyses identified P. knowlesi and/or P. cynomolgi, P. fieldi, P. inui, P. coatneyi and possibly novel Plasmodium spp. in salivary glands of An. latens and An. introlatus from the Leucosphyrus Group and in An. collessi and An. roperi from the Umbrosus Group. Phylogenetic analyses of cytochrome oxidase subunit I sequences indicated three P. knowlesi-positive An. introlatus had been misidentified morphologically as An. latens, while An. collessi and An. roperi could not be delineated using the region sequenced. Almost all vectors from the Leucosphyrus Group were biting after 1800 h but those belonging to the Umbrosus Group were also biting between 0700 and 1100 h. Our study incriminated new vectors of knowlesi malaria in Sarawak and underscores the importance of including entomological studies during the daytime to obtain a comprehensive understanding of the transmission dynamics of malaria.
    Matched MeSH terms: Plasmodium/genetics
  9. Muehlenbein MP, Pacheco MA, Taylor JE, Prall SP, Ambu L, Nathan S, et al.
    Mol Biol Evol, 2015 Feb;32(2):422-39.
    PMID: 25389206 DOI: 10.1093/molbev/msu310
    Although parasitic organisms are found worldwide, the relative importance of host specificity and geographic isolation for parasite speciation has been explored in only a few systems. Here, we study Plasmodium parasites known to infect Asian nonhuman primates, a monophyletic group that includes the lineage leading to the human parasite Plasmodium vivax and several species used as laboratory models in malaria research. We analyze the available data together with new samples from three sympatric primate species from Borneo: The Bornean orangutan and the long-tailed and the pig-tailed macaques. We find several species of malaria parasites, including three putatively new species in this biodiversity hotspot. Among those newly discovered lineages, we report two sympatric parasites in orangutans. We find no differences in the sets of malaria species infecting each macaque species indicating that these species show no host specificity. Finally, phylogenetic analysis of these data suggests that the malaria parasites infecting Southeast Asian macaques and their relatives are speciating three to four times more rapidly than those with other mammalian hosts such as lemurs and African apes. We estimate that these events took place in approximately a 3-4-Ma period. Based on the genetic and phenotypic diversity of the macaque malarias, we hypothesize that the diversification of this group of parasites has been facilitated by the diversity, geographic distributions, and demographic histories of their primate hosts.
    Matched MeSH terms: Plasmodium/genetics*
  10. Yusof R, Lau YL, Mahmud R, Fong MY, Jelip J, Ngian HU, et al.
    Malar J, 2014;13:168.
    PMID: 24886266 DOI: 10.1186/1475-2875-13-168
    Plasmodium knowlesi is a simian parasite that has been recognized as the fifth species causing human malaria. Naturally-acquired P. knowlesi infection is widespread among human populations in Southeast Asia. The aim of this epidemiological study was to determine the incidence and distribution of malaria parasites, with a particular focus on human P. knowlesi infection in Malaysia.
    Matched MeSH terms: Plasmodium/genetics
  11. Singh B
    Int J Parasitol, 1997 Oct;27(10):1135-45.
    PMID: 9394184
    Direct microscopy is widely used for the diagnosis of parasitic infections although it often requires an experienced microscopist for accurate diagnosis, is labour intensive and not very sensitive. In order to overcome some of these shortcomings, molecular or nucleic acid-based diagnostic methods for parasitic infections have been developed over the past 12 years. The parasites which have been studied with these techniques include the human Plasmodia, Leishmania, the trypanosomes, Toxoplasma gondii, Entamoeba histolytica, Giardia, Trichomonas vaginalis, Cryptosporidium parvum, Taenia, Echinococcus, Brugia malayi, Wuchereria bancrofti, Loa loa and Onchocerca volvulus. Early methods, which involved hybridisation of specific probes (radiolabelled and non-radiolabelled) to target deoxyribonucleic acid (DNA), have been replaced by more sensitive polymerase chain reaction (PCR)-based assays. Other methods, such as PCR-hybridisation assays, PCR-restriction fragment length polymorphism (PCR-RFLP) assays and random amplified polymorphic DNA (RAPD) analysis have also proved valuable for epidemiological studies of parasites. The general principles and development of DNA-based methods for diagnosis and epidemiological studies will be described, with particular reference to malaria. These methods will probably not replace current methods for routine diagnosis of parasitic infections in developing countries where parasitic diseases are endemic, due to high costs. However, they will be extremely useful for genotyping parasite strains and vectors, and for accurate parasite detection in both humans and vectors during epidemiological studies.
    Matched MeSH terms: Plasmodium/genetics
  12. Britton S, Cheng Q, Grigg MJ, Poole CB, Pasay C, William T, et al.
    PLoS Negl Trop Dis, 2016 Feb;10(2):e0004443.
    PMID: 26870958 DOI: 10.1371/journal.pntd.0004443
    INTRODUCTION: Plasmodium vivax malaria has a wide geographic distribution and poses challenges to malaria elimination that are likely to be greater than those of P. falciparum. Diagnostic tools for P. vivax infection in non-reference laboratory settings are limited to microscopy and rapid diagnostic tests but these are unreliable at low parasitemia. The development and validation of a high-throughput and sensitive assay for P. vivax is a priority.

    METHODS: A high-throughput LAMP assay targeting a P. vivax mitochondrial gene and deploying colorimetric detection in a 96-well plate format was developed and evaluated in the laboratory. Diagnostic accuracy was compared against microscopy, antigen detection tests and PCR and validated in samples from malaria patients and community controls in a district hospital setting in Sabah, Malaysia.

    RESULTS: The high throughput LAMP-P. vivax assay (HtLAMP-Pv) performed with an estimated limit of detection of 1.4 parasites/ μL. Assay primers demonstrated cross-reactivity with P. knowlesi but not with other Plasmodium spp. Field testing of HtLAMP-Pv was conducted using 149 samples from symptomatic malaria patients (64 P. vivax, 17 P. falciparum, 56 P. knowlesi, 7 P. malariae, 1 mixed P. knowlesi/P. vivax, with 4 excluded). When compared against multiplex PCR, HtLAMP-Pv demonstrated a sensitivity for P. vivax of 95% (95% CI 87-99%); 61/64), and specificity of 100% (95% CI 86-100%); 25/25) when P. knowlesi samples were excluded. HtLAMP-Pv testing of 112 samples from asymptomatic community controls, 7 of which had submicroscopic P. vivax infections by PCR, showed a sensitivity of 71% (95% CI 29-96%; 5/7) and specificity of 93% (95% CI87-97%; 98/105).

    CONCLUSION: This novel HtLAMP-P. vivax assay has the potential to be a useful field applicable molecular diagnostic test for P. vivax infection in elimination settings.

    Matched MeSH terms: Plasmodium/genetics
  13. Anthony C, Mahmud R, Lau YL, Syedomar SF, Sri La Sri Ponnampalavanar S
    Trop Biomed, 2013 Sep;30(3):459-66.
    PMID: 24189676 MyJurnal
    Battling malaria will be a persistent struggle without the proper means to diagnose the parasitic infection. However, the inherent limitations of microscopy, the conventional method of diagnosing malaria, affect the accuracy of diagnosis. The present study aimed to compare the accuracy of two different set of primers targeting the small subunit ribosomal RNA (ssRNA) and the dihydrofolate reductase-thymidylate synthase linker region (dhfr-ts) in detecting species specific malaria infections by nested PCR. The sensitivity and specificity of nested PCR assay using the two primers were calculated with reference to microscopy as the 'gold standard'. The results show that 18S rRNA primers had 91.9% sensitivity and 100% specificity in detecting human Plasmodium species as opposed to dhfr-ts primers which had 51.4% sensitivity and 100% specificity. The higher sensitivity of 18S rRNA primers suggests that it may be a better diagnostic tool for detecting human malaria.
    Matched MeSH terms: Plasmodium/genetics
  14. Idris ZM, Chan CW, Kongere J, Gitaka J, Logedi J, Omar A, et al.
    Sci Rep, 2016 11 14;6:36958.
    PMID: 27841361 DOI: 10.1038/srep36958
    Kenya is intensifying its national efforts in malaria control to achieve malaria elimination. Detailed characterization of malaria infection among populations living in the areas where the disease is endemic in Kenya is a crucial priority, especially for planning and evaluating future malaria elimination strategy. This study aimed to investigate the distribution and extent of malaria infection on islands in Lake Victoria of Kenya to aid in designing new interventions for malaria elimination. Five cross-sectional surveys were conducted between January 2012 and August 2014 on four islands (Mfangano, Takawiri, Kibuogi and Ngodhe) in Lake Victoria and a coastal mainland (Ungoye). Malaria prevalence varied significantly among settings: highest in Ungoye, followed by the large island of Mfangano and lowest in the three remaining small islands. Of the 3867 malaria infections detected by PCR, 91.8% were asymptomatic, 50.3% were sub-microscopic, of which 94% were also asymptomatic. We observed geographical differences and age dependency in both proportion of sub-microscopic infections and asymptomatic parasite carriage. Our findings highlighted the local heterogeneity in malaria prevalence on islands and a coastal area in Lake Victoria, and provided support for the inclusion of mass drug administration as a component of the intervention package to eliminate malaria on islands.
    Matched MeSH terms: Plasmodium/genetics*
  15. Akter R, Vythilingam I, Khaw LT, Qvist R, Lim YA, Sitam FT, et al.
    Malar J, 2015 Oct 05;14:386.
    PMID: 26437652 DOI: 10.1186/s12936-015-0856-3
    BACKGROUND: Malaria is a vector-borne parasitic disease which is prevalent in many developing countries. Recently, it has been found that Plasmodium knowlesi, a simian malaria parasite can be life-threatening to humans. Long-tailed macaques, which are widely distributed in Malaysia, are the natural hosts for simian malaria, including P. knowlesi. The aim of the present study was to determine the prevalence of simian malaria parasites in long-tailed macaques in the district of Hulu Selangor, Selangor, Malaysia.

    METHODS: A total of 70 blood samples were collected from Macaca fascicularis dwelling in the forest of Hulu Selangor by the Department of Wildlife and National Parks Peninsular Malaysia, Kuala Lumpur, Malaysia. DNA was extracted using PureLink™ Genomic DNA Kits. Conventional and nested PCR were used to detect the genus and species of Plasmodium parasites respectively. In addition, phylogenetic analysis was carried out to confirm the species of Plasmodium parasites.

    RESULTS: Thirty-five (50 %) of the 70 samples were positive for Plasmodium using genus-specific primers. These positive samples were then subjected to nested PCR targeting the 18S ribosomal RNA genes to detect all five simian malaria parasites: namely, P. knowlesi, Plasmodium inui, Plasmodium cynomolgi, Plasmodium fieldi, and Plasmodium coatneyi. All five species of simian malaria parasites were detected. Of these, P. inui was the predominant (65.7 %), followed by P. knowlesi (60 %), P. cynomolgi (51.4 %) P. coatneyi (45.7 %) and P. fieldi (2.9 %). A total of nine macaques had mono-infection with P. knowlesi (four), P. cynomolgi (two), P. coatneyi (two) and P. fieldi (one). Eleven of the macaques had dual infections while 12 had triple infections. Three macaques were infected with four species of Plasmodium. Molecular and phylogenetic analysis confirmed the five species of Plasmodium parasites.

    CONCLUSION: This study has provided evidence to elucidate the presence of transmission of malaria parasites among the local macaques in Hulu Selangor. Since malaria is a zoonosis, it is important to determine the new control strategies for the control of malaria.

    Matched MeSH terms: Plasmodium/genetics
  16. Noordin NR, Lee PY, Mohd Bukhari FD, Fong MY, Abdul Hamid MH, Jelip J, et al.
    Am J Trop Med Hyg, 2020 09;103(3):1107-1110.
    PMID: 32618263 DOI: 10.4269/ajtmh.20-0268
    Asymptomatic and/or low-density malaria infection has been acknowledged as an obstacle to achieving a malaria-free country. This study aimed to determine the prevalence of asymptomatic and/or low-density malaria infection in previously reported malarious localities using nested PCR in four states, namely, Johor, Pahang, Kelantan, and Selangor, between June 2019 and January 2020. Blood samples (n = 585) were collected and were extracted using a QIAamp blood kit. The DNA was concentrated and subjected to nested PCR. Thin and thick blood smears were examined as well. Of the 585 samples collected, 19 were positive: 10 for Plasmodium knowlesi, eight for Plasmodium vivax, and one for Plasmodium ovale. Asymptomatic and/or low-density malaria infection is a threat to malaria elimination initiatives. Eliminating countries should develop guidance policy on the importance of low-density malaria infection which includes detection and treatment policy.
    Matched MeSH terms: Plasmodium/genetics
  17. Chew CH, Lim YA, Lee PC, Mahmud R, Chua KH
    J Clin Microbiol, 2012 Dec;50(12):4012-9.
    PMID: 23035191 DOI: 10.1128/JCM.06454-11
    Malaria remains one of the major killers of humankind and persists to threaten the lives of more than one-third of the world's population. Given that human malaria can now be caused by five species of Plasmodium, i.e., Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale, and the recently included Plasmodium knowlesi, there is a critical need not only to augment global health efforts in malaria control but also, more importantly, to develop a rapid, accurate, species-sensitive/species-specific, and economically effective diagnostic method for malaria caused by these five species. Therefore, in the present study, a straightforward single-step hexaplex PCR system targeting five human Plasmodium 18S small-subunit rRNAs (ssu rRNAs) was designed, and the system successfully detected all five human malaria parasites. In addition, this system enables the differentiation of single infection as well as mixed infections up to the two-species level. This assay was validated with 50 randomly blinded test and 184 clinical samples suspected to indicate malaria. This hexaplex PCR system is not only an ideal alternative for routine malaria diagnosis in laboratories with conventional PCR machines but also adds value to diagnoses when there is a lack of an experienced microscopist or/and when the parasite morphology is confusing. Indeed, this system will definitely enhance the accuracy and accelerate the speed in the diagnosis of malaria, as well as improve the efficacy of malaria treatment and control, in addition to providing reliable data from epidemiological surveillance studies.
    Matched MeSH terms: Plasmodium/genetics
  18. Masello JF, Martínez J, Calderón L, Wink M, Quillfeldt P, Sanz V, et al.
    Parasit Vectors, 2018 Jun 19;11(1):357.
    PMID: 29921331 DOI: 10.1186/s13071-018-2940-3
    BACKGROUND: Parasites can exert selection pressure on their hosts through effects on survival, on reproductive success, on sexually selected ornament, with important ecological and evolutionary consequences, such as changes in population viability. Consequently, hemoparasites have become the focus of recent avian studies. Infection varies significantly among taxa. Various factors might explain the differences in infection among taxa, including habitat, climate, host density, the presence of vectors, life history and immune defence. Feeding behaviour can also be relevant both through increased exposure to vectors and consumption of secondary metabolites with preventative or therapeutic effects that can reduce parasite load. However, the latter has been little investigated. Psittaciformes (parrots and cockatoos) are a good model to investigate these topics, as they are known to use biological control against ectoparasites and to feed on toxic food. We investigated the presence of avian malaria parasites (Plasmodium), intracellular haemosporidians (Haemoproteus, Leucocytozoon), unicellular flagellate protozoans (Trypanosoma) and microfilariae in 19 Psittaciformes species from a range of habitats in the Indo-Malayan, Australasian and Neotropical regions. We gathered additional data on hemoparasites in wild Psittaciformes from the literature. We considered factors that may control the presence of hemoparasites in the Psittaciformes, compiling information on diet, habitat, and climate. Furthermore, we investigated the role of diet in providing antiparasitic secondary metabolites that could be used as self-medication to reduce parasite load.

    RESULTS: We found hemoparasites in only two of 19 species sampled. Among them, all species that consume at least one food item known for its secondary metabolites with antimalarial, trypanocidal or general antiparasitic properties, were free from hemoparasites. In contrast, the infected parrots do not consume food items with antimalarial or even general antiparasitic properties. We found that the two infected species in this study consumed omnivorous diets. When we combined our data with data from studies previously investigating blood parasites in wild parrots, the positive relationship between omnivorous diets and hemoparasite infestation was confirmed. Individuals from open habitats were less infected than those from forests.

    CONCLUSIONS: The consumption of food items known for their secondary metabolites with antimalarial, trypanocidal or general antiparasitic properties, as well as the higher proportion of infected species among omnivorous parrots, could explain the low prevalence of hemoparasites reported in many vertebrates.

    Matched MeSH terms: Plasmodium/genetics
  19. Jiram AI, Ooi CH, Rubio JM, Hisam S, Karnan G, Sukor NM, et al.
    Malar J, 2019 May 02;18(1):156.
    PMID: 31046769 DOI: 10.1186/s12936-019-2786-y
    BACKGROUND: Malaysia has declared its aim to eliminate malaria with a goal of achieving zero local transmission by the year 2020. However, targeting the human reservoir of infection, including those with asymptomatic infection is required to achieve malaria elimination. Diagnosing asymptomatic malaria is not as straightforward due to the obvious lack of clinical manifestations and often subpatent level of parasites. Accurate diagnosis of malaria is important for providing realistic estimates of malaria burden and preventing misinformed interventions. Low levels of parasitaemia acts as silent reservoir of transmission thus remains infectious to susceptible mosquito vectors. Hence, the aim of this study is to investigate the prevalence of asymptomatic submicroscopic malaria (SMM) in the District of Belaga, Sarawak.

    METHODS: In 2013, a total of 1744 dried blood spots (DBS) were obtained from residents of 8 longhouses who appeared healthy. Subsequently, 251 venous blood samples were collected from residents of 2 localities in 2014 based on the highest number of submicroscopic cases from prior findings. Thin and thick blood films were prepared from blood obtained from all participants in this study. Microscopic examination were carried out on all samples and a nested and nested multiplex PCR were performed on samples collected in 2013 and 2014 respectively.

    RESULTS: No malaria parasites were detected in all the Giemsa-stained blood films. However, of the 1744 samples, 29 (1.7%) were positive for Plasmodium vivax by PCR. Additionally, of the 251 samples, the most prevalent mono-infection detected by PCR was Plasmodium falciparum 50 (20%), followed by P. vivax 39 (16%), P. knowlesi 9 (4%), and mixed infections 20 (8%).

    CONCLUSIONS: This research findings conclude evidence of Plasmodium by PCR, among samples previously undetectable by routine blood film microscopic examination, in local ethnic minority who are clinically healthy. SMM in Belaga district is attributed not only to P. vivax, but also to P. falciparum and P. knowlesi. In complementing efforts of programme managers, there is a need to increase surveillance for SMM nationwide to estimate the degree of SMM that warrant measures to block new transmission of malaria.

    Matched MeSH terms: Plasmodium/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links