Displaying publications 1 - 20 of 51 in total

Abstract:
Sort:
  1. Zainol Abidin AS, Rahim RA, Md Arshad MK, Fatin Nabilah MF, Voon CH, Tang TH, et al.
    Sensors (Basel), 2017 May 22;17(5).
    PMID: 28531146 DOI: 10.3390/s17051180
    Anxiety is a psychological problem that often emerges during the normal course of human life. The detection of anxiety often involves a physical exam and a self-reporting questionnaire. However, these approaches have limitations, as the data might lack reliability and consistency upon application to the same population over time. Furthermore, there might be varying understanding and interpretations of the particular question by the participant, which necessitating the approach of using biomarker-based measurement for stress diagnosis. The most prominent biomarker related to stress, hormone cortisol, plays a key role in the fight-or-flight situation, alters the immune response, and suppresses the digestive and the reproductive systems. We have taken the endeavour to review the available aptamer-based biosensor (aptasensor) for cortisol detection. The potential point-of-care diagnostic strategies that could be harnessed for the aptasensing of cortisol were also envisaged.
    Matched MeSH terms: Point-of-Care Systems*
  2. Choi JR, Hu J, Tang R, Gong Y, Feng S, Ren H, et al.
    Lab Chip, 2016 Feb 7;16(3):611-21.
    PMID: 26759062 DOI: 10.1039/c5lc01388g
    With advances in point-of-care testing (POCT), lateral flow assays (LFAs) have been explored for nucleic acid detection. However, biological samples generally contain complex compositions and low amounts of target nucleic acids, and currently require laborious off-chip nucleic acid extraction and amplification processes (e.g., tube-based extraction and polymerase chain reaction (PCR)) prior to detection. To the best of our knowledge, even though the integration of DNA extraction and amplification into a paper-based biosensor has been reported, a combination of LFA with the aforementioned steps for simple colorimetric readout has not yet been demonstrated. Here, we demonstrate for the first time an integrated paper-based biosensor incorporating nucleic acid extraction, amplification and visual detection or quantification using a smartphone. A handheld battery-powered heating device was specially developed for nucleic acid amplification in POC settings, which is coupled with this simple assay for rapid target detection. The biosensor can successfully detect Escherichia coli (as a model analyte) in spiked drinking water, milk, blood, and spinach with a detection limit of as low as 10-1000 CFU mL(-1), and Streptococcus pneumonia in clinical blood samples, highlighting its potential use in medical diagnostics, food safety analysis and environmental monitoring. As compared to the lengthy conventional assay, which requires more than 5 hours for the entire sample-to-answer process, it takes about 1 hour for our integrated biosensor. The integrated biosensor holds great potential for detection of various target analytes for wide applications in the near future.
    Matched MeSH terms: Point-of-Care Systems*
  3. Citartan M, Tang TH
    Talanta, 2019 Jul 01;199:556-566.
    PMID: 30952298 DOI: 10.1016/j.talanta.2019.02.066
    Aptamers are nucleic acid-based molecular recognition elements that are specific and have high binding affinity against their respective targets. On account of their target recognition capacity, aptamers are widely utilized in a number of applications including diagnostics. This review aims to highlight the recent developments of aptasensors expedient for point-of-care (POC) diagnostics. Significant focus is given on the primary assay formats of aptamers such as fluorescence, electrochemical, surface plasmon resonance (SPR) and colorimetric assays. A potpourri of platforms such as paper-based device, lateral flow assay, portable electrodes, portable SPR and smart phones expedient for point-of-care (POC) diagnostics are discussed. Emphasis is also given on the technicalities and assay configurations associated with the sensors.
    Matched MeSH terms: Point-of-Care Systems*
  4. Yap BK, M Soair SN, Talik NA, Lim WF, Mei I L
    Sensors (Basel), 2018 Aug 10;18(8).
    PMID: 30103424 DOI: 10.3390/s18082625
    Over the past 20 years, rapid technological advancement in the field of microfluidics has produced a wide array of microfluidic point-of-care (POC) diagnostic devices for the healthcare industry. However, potential microfluidic applications in the field of nutrition, specifically to diagnose iron deficiency anemia (IDA) detection, remain scarce. Iron deficiency anemia is the most common form of anemia, which affects billions of people globally, especially the elderly, women, and children. This review comprehensively analyzes the current diagnosis technologies that address anemia-related IDA-POC microfluidic devices in the future. This review briefly highlights various microfluidics devices that have the potential to detect IDA and discusses some commercially available devices for blood plasma separation mechanisms. Reagent deposition and integration into microfluidic devices are also explored. Finally, we discuss the challenges of insights into potential portable microfluidic systems, especially for remote IDA detection.
    Matched MeSH terms: Point-of-Care Systems*
  5. Arifin N, Hanafiah KM, Ahmad H, Noordin R
    J Microbiol Immunol Infect, 2019 Jun;52(3):371-378.
    PMID: 30482708 DOI: 10.1016/j.jmii.2018.10.001
    Strongyloidiasis is a major neglected tropical disease with the potential of causing lifelong infection and mortality. One of the ways for effective control of this disease is developing improved diagnostics, particularly using serological approaches. A serological test can achieve high diagnostic sensitivity and specificity, has the potential for point-of-care translation, and can be used as a screening tool for early detection. More research is needed to find clinically important antibody biomarkers for early disease detection, mapping, and epidemiological surveillance. This article summarizes human strongyloidiasis and the available diagnostic tools for the disease, focusing on describing the current antibody assays for strongyloidiasis. Finally, prospects of developing a more effective serodiagnostic tool for strongyloidiasis are discussed.
    Matched MeSH terms: Point-of-Care Systems
  6. Aeinehvand MM, Ibrahim F, Harun SW, Al-Faqheri W, Thio TH, Kazemzadeh A, et al.
    Lab Chip, 2014 Mar 7;14(5):988-97.
    PMID: 24441792 DOI: 10.1039/c3lc51116b
    Centrifugal microfluidic platforms have emerged as point-of-care diagnostic tools. However, the unidirectional nature of the centrifugal force limits the available space for multi-step processes on a single microfluidic disc. To overcome this limitation, a passive pneumatic pumping method actuated at high rotational speeds has been previously proposed to pump liquid against the centrifugal force. In this paper, a novel micro-balloon pumping method that relies on elastic energy stored in a latex membrane is introduced. It operates at low rotational speeds and pumps a larger volume of liquid towards the centre of the disc. Two different micro-balloon pumping mechanisms have been designed to study the pump performance at a range of rotational frequencies from 0 to 1500 rpm. The behaviour of the micro-balloon pump on the centrifugal microfluidic platforms has been theoretically analysed and compared with the experimental data. The experimental data show that the developed pumping method dramatically decreases the required rotational speed to pump liquid compared to the previously developed pneumatic pumping methods. It also shows that within a range of rotational speed, a desirable volume of liquid can be stored and pumped by adjusting the size of the micro-balloon.
    Matched MeSH terms: Point-of-Care Systems
  7. Choi JR, Hu J, Gong Y, Feng S, Wan Abas WA, Pingguan-Murphy B, et al.
    Analyst, 2016 05 10;141(10):2930-9.
    PMID: 27010033 DOI: 10.1039/c5an02532j
    Lateral flow assays (LFAs) have been extensively explored in nucleic acid testing (NAT) for medical diagnostics, food safety analysis and environmental monitoring. However, the amount of target nucleic acid in a raw sample is usually too low to be directly detected by LFAs, necessitating the process of amplification. Even though cost-effective paper-based amplification techniques have been introduced, they have always been separately performed from LFAs, hence increasing the risk of reagent loss and cross-contaminations. To date, integrating paper-based nucleic acid amplification into colorimetric LFA in a simple, portable and cost-effective manner has not been introduced. Herein, we developed an integrated LFA with the aid of a specially designed handheld battery-powered system for effective amplification and detection of targets in resource-poor settings. Interestingly, using the integrated paper-based loop-mediated isothermal amplification (LAMP)-LFA, we successfully performed highly sensitive and specific target detection, achieving a detection limit of as low as 3 × 10(3) copies of target DNA, which is comparable to the conventional tube-based LAMP-LFA in an unintegrated format. The device may serve in conjunction with a simple paper-based sample preparation to create a fully integrated paper-based sample-to-answer diagnostic device for point-of-care testing (POCT) in the near future.
    Matched MeSH terms: Point-of-Care Systems
  8. Tan MK, Siddiqi A, Yeo LY
    Sci Rep, 2017 07 27;7(1):6652.
    PMID: 28751783 DOI: 10.1038/s41598-017-07025-x
    The Miniaturised Lab-on-a-Disc (miniLOAD) platform, which utilises surface acoustic waves (SAWs) to drive the rotation of thin millimeter-scale discs on which microchannels can be fabricated and hence microfluidic operations can be performed, offers the possibility of miniaturising its larger counterpart, the Lab-on-a-CD, for true portability in point-of-care applications. A significant limitation of the original miniLOAD concept, however, is that it does not allow for flexible control over the disc rotation direction and speed without manual adjustment of the disc's position, or the use of multiple devices to alter the SAW frequency. In this work, we demonstrate the possibility of achieving such control with the use of tapered interdigitated transducers to confine a SAW beam such that the localised acoustic streaming it generates imparts a force, through hydrodynamic shear, at a specific location on the disc. Varying the torque that arises as a consequence by altering the input frequency to the transducers then allows the rotational velocity and direction of the disc to be controlled with ease. We derive a simple predictive model to illustrate the principle by which this occurs, which we find agrees well with the experimental measurements.
    Matched MeSH terms: Point-of-Care Systems
  9. Ang KM, Yeo LY, Hung YM, Tan MK
    Lab Chip, 2016 09 21;16(18):3503-14.
    PMID: 27502324 DOI: 10.1039/c6lc00780e
    The deposition of a thin graphene film atop a chip scale piezoelectric substrate on which surface acoustic waves are excited is observed to enhance its performance for fluid transport and manipulation considerably, which can be exploited to achieve further efficiency gains in these devices. Such gains can then enable complete integration and miniaturization for true portability for a variety of microfluidic applications across drug delivery, biosensing and point-of-care diagnostics, among others, where field-use, point-of-collection or point-of-care functionality is desired. In addition to a first demonstration of vibration-induced molecular transport in graphene films, we show that the coupling of the surface acoustic wave gives rise to antisymmetric Lamb waves in the film which enhance molecular diffusion and hence the flow through the interstitial layers that make up the film. Above a critical input power, the strong substrate vibration displacement can also force the molecules out of the graphene film to form a thin fluid layer, which subsequently destabilizes and breaks up to form a mist of micron dimension aerosol droplets. We provide physical insight into this coupling through a simple numerical model, verified through experiments, and show several-fold improvement in the rate of fluid transport through the film, and up to 55% enhancement in the rate of fluid atomization from the film using this simple method.
    Matched MeSH terms: Point-of-Care Systems
  10. Hu J, Yew CT, Chen X, Feng S, Yang Q, Wang S, et al.
    Talanta, 2017 Apr 01;165:419-428.
    PMID: 28153277 DOI: 10.1016/j.talanta.2016.12.086
    The identification and quantification of chemicals play a vital role in evaluation and surveillance of environmental health and safety. However, current techniques usually depend on costly equipment, professional staff, and/or essential infrastructure, limiting their accessibility. In this work, we develop paper-based capacitive sensors (PCSs) that allow simple, rapid identification and quantification of various chemicals from microliter size samples with the aid of a handheld multimeter. PCSs are low-cost parallel-plate capacitors (~$0.01 per sensor) assembled from layers of aluminum foil and filter paper via double-sided tape. The developed PCSs can identify different kinds of fluids (e.g., organic chemicals) and quantify diverse concentrations of substances (e.g., heavy metal ions) based on differences in dielectric properties, including capacitance, frequency spectrum, and dielectric loss tangent. The PCS-based method enables chemical identification and quantification to take place much cheaply, simply, and quickly at the point-of-care (POC), holding great promise for environmental monitoring in resource-limited settings.
    Matched MeSH terms: Point-of-Care Systems
  11. Che Engku Noramalina Che-Engku-Chik, Siti Sarah Othman, Helmi Wasoh, Nor Azah Yusof, Jaafar Abdullah, Mohd Hazani Mat Zaid
    MyJurnal
    Despite the continued effort globally made to control the growing case of Tuberculosis (TB), it
    continues to be regarded as the second deadliest disease after the HIV. There are various
    methods developed to diagnose TB, most of which having the criteria of sensitive, selective,
    cheap and portable to be used in robust applications. Even with the advancement in medication,
    the important keys including early stage diagnosis is yet to be considered. In diagnosing TB, the
    only technique remained as the gold standard method is the culturing method, which is the Acid
    Fast Bacilli (AFB) staining. On the other hand, molecular technique utilising Polymerase Chain
    Reaction (PCR) assay is preferred as a non-culturing method. Additionally, as molecular
    techniques become advanced, real-time PCR or quantitative PCR (qPCR) using multiple probes
    in one shot has raised interest among researchers, because it can skip the process of gel
    electrophoresis. Recently, researchers have been working on electrochemical DNA sensors
    which are sensitive, selective, rapid, cheap and can meet with point of care (POC) testing
    requirements to diagnose TB.
    Matched MeSH terms: Point-of-Care Systems
  12. Aeinehvand MM, Weber L, Jiménez M, Palermo A, Bauer M, Loeffler FF, et al.
    Lab Chip, 2019 Feb 20.
    PMID: 30785443 DOI: 10.1039/c8lc00849c
    Reversible valves on centrifugal microfluidic platforms facilitate the automation of bioanalytical assays, especially of those requiring a series of steps (such as incubation) in a single reaction chamber. In this study, we present fixed elastic reversible (FER) valves and tunable elastic reversible (TER) valves that are easy to fabricate, implement and control. In the FER valve the compression of an elastic barrier/patch against a microchamber's outlet prevents the release of liquid. The valve sealing pressure was determined by adjusting the engraving depth of the valve-seat at which the elastic patch was located, this allows to set the sealing pressure during disc fabrication. In the TER valve, the patch compression value and sealing pressure is controlled by the penetration depth of a plastic screw into the valve-seat. The ER valves prevent liquid flow until the centrifugal force overcomes their sealing pressure. Moreover, at a constant spin speed, turning the screw of a TER valve reduces its sealing pressure and opens the valve. Therefore, the TER valve allows for controlling of the liquid transfer volume at various spin speeds. The FER and TER valves' behavior is mathematically described and equations for the prediction of their operation under centrifugal forces are provided. As a point-of-care (POC) application of ER valves, we have developed a microfluidic disc with a series of TER valves and peptide microarrays for automated multiplexed detection of five different proteins from a single serum sample.
    Matched MeSH terms: Point-of-Care Systems
  13. Basha IHK, Ho ETW, Yousuff CM, Hamid NHB
    Micromachines (Basel), 2017 Aug 30;8(9).
    PMID: 30400456 DOI: 10.3390/mi8090266
    Highly sensitive and specific pathogen diagnosis is essential for correct and timely treatment of infectious diseases, especially virulent strains, in people. Point-of-care pathogen diagnosis can be a tremendous help in managing disease outbreaks as well as in routine healthcare settings. Infectious pathogens can be identified with high specificity using molecular methods. A plethora of microfluidic innovations in recent years have now made it increasingly feasible to develop portable, robust, accurate, and sensitive genomic diagnostic devices for deployment at the point of care. However, improving processing time, multiplexed detection, sensitivity and limit of detection, specificity, and ease of deployment in resource-limited settings are ongoing challenges. This review outlines recent techniques in microfluidic genomic diagnosis and devices with a focus on integrating them into a lab on a chip that will lead towards the development of multiplexed point-of-care devices of high sensitivity and specificity.
    Matched MeSH terms: Point-of-Care Systems
  14. Fathil MF, Md Arshad MK, Gopinath SC, Hashim U, Adzhri R, Ayub RM, et al.
    Biosens Bioelectron, 2015 Aug 15;70:209-20.
    PMID: 25841117 DOI: 10.1016/j.bios.2015.03.037
    Acute myocardial infarction or myocardial infarction (MI) is a major health problem, due to diminished flow of blood to the heart, leads to higher rates of mortality and morbidity. Data from World Health Organization (WHO) accounted 30% of global death annually and expected more than 23 million die annually by 2030. This fatal effects trigger the need of appropriate biomarkers for early diagnosis, thus countermeasure can be taken. At the moment, the most specific markers for cardiac injury are cardiac troponin I (cTnI) and cardiac troponin T (cTnT) which have been considered as 'gold standard'. Due to higher specificity, determination of the level of cardiac troponins became a predominant indicator for MI. Several ways of diagnostics have been formulated, which include enzyme-linked immunosorbent assay, chemiluminescent, fluoro-immunoassays, electrical detections, surface plasmon resonance, and colorimetric protein assay. This review represents and elucidates the strategies, methods and detection levels involved in these diagnostics on cardiac superior biomarkers. The advancement, sensitivity, and limitations of each method are also discussed. In addition, it concludes with a discussion on the point-of care (POC) assay for a fast, accurate and ability of handling small sample measurement of cardiac biomarker.
    Matched MeSH terms: Point-of-Care Systems*
  15. Sculthorpe-Petley L, Liu C, Hajra SG, Parvar H, Satel J, Trappenberg TP, et al.
    J. Neurosci. Methods, 2015 Apr 30;245:64-72.
    PMID: 25701685 DOI: 10.1016/j.jneumeth.2015.02.008
    Event-related potentials (ERPs) may provide a non-invasive index of brain function for a range of clinical applications. However, as a lab-based technique, ERPs are limited by technical challenges that prevent full integration into clinical settings.
    Matched MeSH terms: Point-of-Care Systems*
  16. Srijaya TC, Ramasamy TS, Kasim NH
    J Transl Med, 2014;12:243.
    PMID: 25182194 DOI: 10.1186/s12967-014-0243-9
    The inadequacy of existing therapeutic tools together with the paucity of organ donors have always led medical researchers to innovate the current treatment methods or to discover new ways to cure disease. Emergence of cell-based therapies has provided a new framework through which it has given the human world a new hope. Though relatively a new concept, the pace of advancement clearly reveals the significant role that stem cells will ultimately play in the near future. However, there are numerous uncertainties that are prevailing against the present setting of clinical trials related to stem cells: like the best route of cell administration, appropriate dosage, duration and several other applications. A better knowledge of these factors can substantially improve the effectiveness of disease cure or organ repair using this latest therapeutic tool. From a certain perspective, it could be argued that by considering certain proven clinical concepts and experience from synthetic drug system, we could improve the overall efficacy of cell-based therapies. In the past, studies on synthetic drug therapies and their clinical trials have shown that all the aforementioned factors have critical ascendancy over its therapeutic outcomes. Therefore, based on the knowledge gained from synthetic drug delivery systems, we hypothesize that by employing many of the clinical approaches from synthetic drug therapies to this new regenerative therapeutic tool, the efficacy of stem cell-based therapies can also be improved.
    Matched MeSH terms: Point-of-Care Systems/trends*
  17. Hu J, Wang S, Wang L, Li F, Pingguan-Murphy B, Lu TJ, et al.
    Biosens Bioelectron, 2014 Apr 15;54:585-97.
    PMID: 24333570 DOI: 10.1016/j.bios.2013.10.075
    Advanced diagnostic technologies, such as polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA), have been widely used in well-equipped laboratories. However, they are not affordable or accessible in resource-limited settings due to the lack of basic infrastructure and/or trained operators. Paper-based diagnostic technologies are affordable, user-friendly, rapid, robust, and scalable for manufacturing, thus holding great potential to deliver point-of-care (POC) diagnostics to resource-limited settings. In this review, we present the working principles and reaction mechanism of paper-based diagnostics, including dipstick assays, lateral flow assays (LFAs), and microfluidic paper-based analytical devices (μPADs), as well as the selection of substrates and fabrication methods. Further, we report the advances in improving detection sensitivity, quantification readout, procedure simplification and multi-functionalization of paper-based diagnostics, and discuss the disadvantages of paper-based diagnostics. We envision that miniaturized and integrated paper-based diagnostic devices with the sample-in-answer-out capability will meet the diverse requirements for diagnosis and treatment monitoring at the POC.
    Matched MeSH terms: Point-of-Care Systems*
  18. Balakrishnan SR, Hashim U, Gopinath SC, Poopalan P, Ramayya HR, Iqbal Omar M, et al.
    PLoS ONE, 2015;10(9):e0137891.
    PMID: 26368287 DOI: 10.1371/journal.pone.0137891
    Human chorionic gonadotropin (hCG), a glycoprotein hormone secreted from the placenta, is a key molecule that indicates pregnancy. Here, we have designed a cost-effective, label-free, in situ point-of-care (POC) immunosensor to estimate hCG using a cuneated 25 nm polysilicon nanogap electrode. A tiny chip with the dimensions of 20.5 × 12.5 mm was fabricated using conventional lithography and size expansion techniques. Furthermore, the sensing surface was functionalized by (3-aminopropyl)triethoxysilane and quantitatively measured the variations in hCG levels from clinically obtained human urine samples. The dielectric properties of the present sensor are shown with a capacitance above 40 nF for samples from pregnant women; it was lower with samples from non-pregnant women. Furthermore, it has been proven that our sensor has a wide linear range of detection, as a sensitivity of 835.88 μA mIU(-1) ml(-2) cm(-2) was attained, and the detection limit was 0.28 mIU/ml (27.78 pg/ml). The dissociation constant Kd of the specific antigen binding to the anti-hCG was calculated as 2.23 ± 0.66 mIU, and the maximum number of binding sites per antigen was Bmax = 22.54 ± 1.46 mIU. The sensing system shown here, with a narrow nanogap, is suitable for high-throughput POC diagnosis, and a single injection can obtain triplicate data or parallel analyses of different targets.
    Matched MeSH terms: Point-of-Care Systems*
  19. Thiha A, Ibrahim F
    Sensors (Basel), 2015;15(5):11431-41.
    PMID: 25993517 DOI: 10.3390/s150511431
    The enzyme-linked Immunosorbent Assay (ELISA) is the gold standard clinical diagnostic tool for the detection and quantification of protein biomarkers. However, conventional ELISA tests have drawbacks in their requirement of time, expensive equipment and expertise for operation. Hence, for the purpose of rapid, high throughput screening and point-of-care diagnosis, researchers are miniaturizing sandwich ELISA procedures on Lab-on-a-Chip and Lab-on-Compact Disc (LOCD) platforms. This paper presents a novel integrated device to detect and interpret the ELISA test results on a LOCD platform. The system applies absorption spectrophotometry to measure the absorbance (optical density) of the sample using a monochromatic light source and optical sensor. The device performs automated analysis of the results and presents absorbance values and diagnostic test results via a graphical display or via Bluetooth to a smartphone platform which also acts as controller of the device. The efficacy of the device was evaluated by performing dengue antibody IgG ELISA on 64 hospitalized patients suspected of dengue. The results demonstrate high accuracy of the device, with 95% sensitivity and 100% specificity in detection when compared with gold standard commercial ELISA microplate readers. This sensor platform represents a significant step towards establishing ELISA as a rapid, inexpensive and automatic testing method for the purpose of point-of-care-testing (POCT) in resource-limited settings.
    Matched MeSH terms: Point-of-Care Systems*
  20. Choi JR, Yong KW, Tang R, Gong Y, Wen T, Yang H, et al.
    Adv Healthc Mater, 2017 Jan;6(1).
    PMID: 27860384 DOI: 10.1002/adhm.201600920
    Paper-based devices have been broadly used for the point-of-care detection of dengue viral nucleic acids due to their simplicity, cost-effectiveness, and readily observable colorimetric readout. However, their moderate sensitivity and functionality have limited their applications. Despite the above-mentioned advantages, paper substrates are lacking in their ability to control fluid flow, in contrast to the flow control enabled by polymer substrates (e.g., agarose) with readily tunable pore size and porosity. Herein, taking the benefits from both materials, the authors propose a strategy to create a hybrid substrate by incorporating agarose into the test strip to achieve flow control for optimal biomolecule interactions. As compared to the unmodified test strip, this strategy allows sensitive detection of targets with an approximately tenfold signal improvement. Additionally, the authors showcase the potential of functionality improvement by creating multiple test zones for semi-quantification of targets, suggesting that the number of visible test zones is directly proportional to the target concentration. The authors further demonstrate the potential of their proposed strategy for clinical assessment by applying it to their prototype sample-to-result test strip to sensitively and semi-quantitatively detect dengue viral RNA from the clinical blood samples. This proposed strategy holds significant promise for detecting various targets for diverse future applications.
    Matched MeSH terms: Point-of-Care Systems*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links