METHODS: ENACT-HF was an international, multicenter, open-label, pragmatic, 2-phase study, comparing the current standard of care of each center with a standardized diuretic protocol, including urinary sodium to guide therapy. The primary end point was natriuresis after 1 day. Secondary end points included cumulative natriuresis and diuresis after 2 days of treatment, length of stay, and in-hospital mortality. All end points were adjusted for baseline differences between both treatment arms.
RESULTS: Four hundred one patients from 29 centers in 18 countries worldwide were included in the study. The natriuresis after 1 day was significantly higher in the protocol arm compared with the standard of care arm (282 versus 174 mmol; adjusted mean ratio, 1.64; P<0.001). After 2 days, the natriuresis remained higher in the protocol arm (538 versus 365 mmol; adjusted mean ratio, 1.52; P<0.001), with a significantly higher diuresis (5776 versus 4381 mL; adjusted mean ratio, 1.33; P<0.001). The protocol arm had a shorter length of stay (5.8 versus 7.0 days; adjusted mean ratio, 0.87; P=0.036). In-hospital mortality was low and did not significantly differ between the 2 arms (1.4% versus 2.0%; P=0.852).
CONCLUSIONS: A standardized natriuresis-guided diuretic protocol to guide decongestion in acute heart failure was feasible, safe, and resulted in higher natriuresis and diuresis, as well as a shorter length of stay.
METHODS AND RESULTS: The Efficacy of a Standardized Diuretic Protocol in Acute Heart Failure (ENACT-HF) study is an international, multicentre, non-randomized, open-label, pragmatic study in AHF patients on chronic loop diuretic therapy, admitted to the hospital for intravenous loop diuretic therapy, aiming to enrol 500 patients. Inclusion criteria are as follows: at least one sign of volume overload (oedema, ascites, or pleural effusion), use ≥ 40 mg of furosemide or equivalent for >1 month, and a BNP > 250 ng/L or an N-terminal pro-B-type natriuretic peptide > 1000 pg/L. The study is designed in two sequential phases. During Phase 1, all centres will treat consecutive patients according to the local standard of care. In the Phase 2 of the study, all centres will implement a standardized diuretic protocol in the next cohort of consecutive patients. The protocol is based upon the recently published HFA algorithm on diuretic use and starts with intravenous administration of two times the oral home dose. It includes early assessment of diuretic response with a spot urinary sodium measurement after 2 h and urine output after 6 h. Diuretics will be tailored further based upon these measurements. The study is powered for its primary endpoint of natriuresis after 1 day and will be able to detect a 15% difference with 80% power. Secondary endpoints are natriuresis and diuresis after 2 days, change in congestion score, change in weight, in-hospital mortality, and length of hospitalization.
CONCLUSIONS: The ENACT-HF study will investigate whether a step-wise diuretic approach, based upon early assessment of urinary sodium and urine output as proposed by the HFA, is feasible and able to improve decongestion in AHF with volume overload.
OBJECTIVE: The objective of this study was to determine the effects of T3 derivatives, σ-T3, γ-T3 and α-T3 on insulin secretion of rat pancreatic islets in a dynamic culture.
METHOD: Pancreatic islets isolated from male Wistar rats were treated with T3 for 1 h at 37°C in a microfluidic system with continuous operation that provided a stable cell culture environment. Glucose (2.8 mM and 16.7 mM, as basal and stimulant, respectively) and potassium chloride (KCl) (30 mM) were added to the treatment in calcium free medium. The supernatant was collected for insulin measurements.
RESULTS: Short-term exposure (1 h) of σ-T3 to β cells in the stimulant glucose condition significantly potentiated insulin secretion in a dose-dependent manner. γ-T3 and α-T3 also displayed dosedependent effect but were less effective in the activation of insulin secretion. Essentially, KCl, a pancreatic β cell membrane depolarizing agent, added into the treatment further enhanced the insulin secretion of σ-T3, γ-T3 and α-T3 with ED50 values of 504, 511 and 588 µM, respectively.
CONCLUSION: The findings suggest the potential of σ-T3 in regulating glucose-stimulated insulin secretion (GSIS) in response to the intracellular calcium especially in the presence of KCl.
Objective: This study aims to fractionate water extract of Labisia pumila, identify the compound(s) involved and elucidate the possible mechanism(s) of its vasorelaxant effects.
Methods: Water extract of Labisia pumila was subjected to liquid-liquid extraction to obtain ethyl acetate, n-butanol and water fractions. In SHR aortic ring preparations, water fraction (WF-LPWE) was established as the most potent fraction for vasorelaxation. The pharmacological mechanisms of the vasorelaxant effect of WF-LPWE were investigated with and without the presence of various inhibitors. The cumulative dose-response curves of potassium chloride (KCl)-induced contractions were conducted to study the possible mechanisms of WF-LPWE in reducing vasoconstriction.
Results: WF-LPWE produced dose-dependent vasorelaxant effect in endothelium-denuded aortic ring and showed non-competitive inhibition of dose-response curves of PE-induced contraction, and at its higher concentrations reduced KCl-induced contraction. 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) significantly inhibited vasorelaxant effect of WF-LPWE. WF-LPWE significantly reduced the release of intracellular calcium ion (Ca2+) from the intracellular stores and suppressed the calcium chloride (CaCal2)-induced contraction. Nω-nitro-L-arginine methyl ester (L-NAME), methylene blue, indomethacin and atropine did not influence the vasorelaxant effects of WF-LPWE.
Conclusion: WF-LPWE exerts its vasorelaxant effect independently of endothelium and possibly by inhibiting the release of calcium from intracellular calcium stores, receptor-operated calcium channels and formation of inositol 1,4,5- triphosphate. WF-LPWE vasorelaxant effect may also mediated via nitric oxide-independent direct involvement of soluble guanylate cyclase (sGC)/ cyclic guanosine monophosphate (cGMP) pathways.
OBJECTIVE: This study sought to identify demographic, clinical, and genetic factors that may contribute to increased insulin resistance or worsening of glycaemic control in patients with T2DM.
SETTING: This prospective cohort study included 156 patients with T2DM and severe or acute hyperglycaemia who were treated with insulin at any medical ward of the National University of Malaysia Medical Centre.
METHOD: Insulin resistance was determined using the homeostatic model assessment-insulin resistance index. Glycaemic control during the episode of hyperglycaemia was assessed as the degree to which the patient achieved the target glucose levels. The polymerase chain reaction-restriction fragment length polymorphism method was used to identify polymorphisms in insulin receptor substrate (IRS) genes.
MAIN OUTCOME MEASURE: Identification of possible predictors (demographic, clinical, or genetic) for insulin resistance and glycaemic control during severe/acute hyperglycaemia.
RESULTS: A polymorphism in IRS1, r.2963 G>A (p.Gly972Arg), was a significant predictor of both insulin resistance [odds ratios (OR) 4.48; 95 % confidence interval (CI) 1.2-16.7; P = 0.03) and worsening of glycaemic control (OR 6.04; 95 % CI 0.6-64.6; P = 0.02). The use of loop diuretics (P < 0.05) and antibiotics (P < 0.05) may indirectly predict worsening of insulin resistance or glycaemic control in patients with severe/acute hyperglycaemia.
CONCLUSION: Clinical and genetic factors contribute to worsening of insulin resistance and glycaemic control during severe/acute hyperglycaemia in patients with T2DM. Early identification of factors that may influence insulin resistance and glycaemic control may help to achieve optimal glycaemic control during severe/acute hyperglycaemia.