PURPOSE: This review aims to provide a critical evaluation of the pharmacological and antidiabetic effects of CONPs in cell and animal models. The roles of CONPs in attenuating DM complications are also presented in this report.
METHODS: We conducted a literature search in the PubMed database using the keywords "cerium oxide", "cerous oxide", "ceria", "nanoceria", and "diabetes" from inception to December 2020. The inclusion criteria were primary source articles that investigated the role of CONPs in DM and diabetic complications.
RESULTS: We identified 47 articles from the initial search. After the thorough screening, only 31 articles were included in this study. We found that CONPs can attenuate parameters that are related to DM and diabetic complications in various animals and cell culture models.
CONCLUSION: CONPs could potentially be used in the treatment of those with DM and complications caused by the disease.
METHODS: Four different solvent extracts of OS, namely aqueous, ethanolic, 50% aqueous ethanolic and methanolic, at a dose of 500 mg/kg body weight (bw) were orally administered for 14 days to diabetic rats induced via intraperitoneal injection of 60 mg/kg bw STZ. NMR metabolomics approach using pattern recognition combined with multivariate statistical analysis was applied in the rat urine to study the resulted metabolic perturbations.
RESULTS: OS aqueous extract (OSAE) caused a reversal of DM comparable to that of 10 mg/kg bw glibenclamide. A total of 15 urinary metabolites, which levels changed significantly upon treatment were identified as the biomarkers of OSAE in diabetes. A systematic metabolic pathways analysis identified that OSAE contributed to the antidiabetic activity mainly through regulating the tricarboxylic acid cycle, glycolysis/gluconeogenesis, lipid and amino acid metabolism.
CONCLUSIONS: The results of this study validated the ethnopharmacological use of OS in diabetes and unveiled the biochemical and metabolic mechanisms involved.
MATERIALS AND METHODS: Total phenolic content, antioxidant activity and phenolic compounds were determined. Then, three groups of rats (control, HCl/ Ethanol-induced ulcer, and orally administered honey) were used for the determination of gastro-protective effect of Sidr honey.
RESULTS: Total phenolic content, total flavonoid content, and DPPH activity of the honey sample were determined as 47.35±3.35 mg GAE/ 100 g, 2.13±0.17 mg QE/ 100 g, and 229.24±0.02 mg/mL, respectively. Oral pretreatment of rats with honey (1.2 g/Kg body weight orally at an interval of 2 days) protected gastric mucosa against HCl/Ethanol-induced damage by decreasing ulcer score, the volume and acidity of gastric juice and increasing pH.
CONCLUSION: These results were confirmed by the histological assessment, which demonstrated a significant gastro-protective activity of Saharian (Sidr) honey against HCl/Ethanol-induced stomach ulcer. Plasma tumor necrosis factor-α, IL-6 and PGE2 were also measured. Sahara honey significantly decreased the plasma TNF-α, PGE2, and IL-6 concentrations.
METHODOLOGY/PRINCIPAL FINDINGS: Rats were divided into 7 groups. Groups 1 and 2 were orally administered with Tween 20 (10% v/v). Group 3 was orally administered with 20 mg/kg omeprazole (10% Tween 20). Groups 4-7 received 10, 20, 40, and 80 mg/kg of the complex (10% Tween 20), respectively. Tween 20 (10% v/v) was given orally to group 1 and absolute ethanol was given orally to groups 2-7, respectively. Rats were sacrificed after 1 h. Group 2 exhibited severe superficial hemorrhagic mucosal lesions. Gastric wall mucus was significantly preserved by the pre-treatment complex. The results showed a significant increase in glutathione (GSH), superoxide dismutase (SOD), nitric oxide (NO), and Prostaglandin E2 (PGE(2)) activities and a decrease in malondialdehyde (MDA) level. Histology showed marked reduction of hemorrhagic mucosal lesions in groups 4-7. Immunohistochemical staining showed up-regulation of Hsp70 and down-regulation of Bax proteins. PAS staining of groups 4-7 showed intense stain uptake of gastric mucosa. The acute toxicity revealed the non-toxic nature of the compound.
CONCLUSIONS/SIGNIFICANCE: The gastroprotective effect of the Copper (II) complex may possibly be due to preservation of gastric wall mucus; increase in PGE(2) synthesis; GSH, SOD, and NO up-regulation of Hsp70 protein; decrease in MDA level; and down-regulation of Bax protein.