METHODOLOGY: Prospective series of 405 OSA patients (350 males/55 females) who had upper airway surgery. Procedures included functional endoscopic sinus surgery, septoplasty, turbinate reduction, palate/tonsil surgery, and/or tongue base surgery. Intubation difficulty (ID) was assessed using Mallampati grade, Laryngoscopic grade (Cormack and Lehane), and clinical parameters including BMI, neck circumference, thyromental distance, jaw adequacy, neck movements and glidescope grading.
RESULTS: Mean age was 41.6 years old; mean BMI 26.6; mean neck circumference 44.5cm; mean Apnea Hypopnea Index (AHI) was 25.0; and mean LSAT 82%. The various laryngeal grades (based on Cormack and Lehane), grade 1 - 53 patients (12.9%), grade 2A - 127 patients (31.0%), grade 2B - 125 patients (30.5%), grade 3 - 93 patients (22.7%) and grade 4 - seven patients (1.7%); hence, 24.4% had difficulties in intubation. Parameters that adversely affected intubation were, age of the patient, opening of mouth, retrognathia, overbite, overjet, limited neck extension, thyromental distance, Mallampati grade, and macroglossia (p<0.001). Body mass index (BMI) (p=0.087), neck circumference (p=0.645), neck aches (p=0.728), jaw aches (p=0.417), tonsil size (p=0.048), and AHI (p=0.047) had poor correlation with intubation. BMI-adjusted for Asians and Caucasians, showed that Asians were more likely to have difficulties in intubation (adjusted OR = 4.6 (95%Confidence Interval: 1.05 to 20.06) (p=0.043), compared to the Caucasian group.
CONCLUSION: This study illustrates that difficult intubation can be predicted pre-surgery in order to avert any anaesthetic morbidity.
OBJECTIVE: We aim to evaluate the cognitive function of obstructive sleep apnea patients by using the 'Mini Mental State Examination'.
METHODOLOGY: This was a cross sectional study to evaluate the cognitive function of moderate and severe obstructive sleep apnea patients with age ranged from 18 to 60 old who attended our sleep clinic. These patients were confirmed to have moderate and severe obstructive sleep apnea by Type 1 polysomnography (attended full overnight study). The age, gender and ethnicity were noted and other relevant data such as weight, height, body mass index and apnea and hypopnoea index were recorded accordingly. The cognitive function was evaluated using validated Malay version of Mini Mental State Examination which measured 5 areas of cognitive functions comprising orientation, registration, attention and calculation, word recall and language abilities, and visuospatial.
RESULTS: A total of 38 patients participated in this study. All 19 patients of moderate group and 14 patients of severe group had normal cognitive function while only 5 patients in severe group had mild cognitive function impairment. There was a statistically significant difference between the moderate group and severe group on cognitive performance (p value = 0.042).
CONCLUSIONS: Severe obstructive sleep apnea patients may have impaired cognitive function. Mini Mental State Examination is useful in the screening of cognitive function of obstructive sleep apnea patients but in normal score, more sophisticated test batteries are required as it is unable to identify in 'very minimal' or 'extremely severe' cognitive dysfunction.
METHODS: This is a cross-sectional study involving 27 patients with symptoms of OSAS seen at a tertiary institutional center and 25 normal controls performed between June 2015 and June 2016. All patients and controls underwent a polysomnography (PSG) test and were diagnosed with OSAS based on the apnea-hypopnea index (AHI). Patients are those with OSAS symptoms and had AHI > 5, whereas controls are staffs from the ophthalmology clinic without clinical criteria for OSAS and had PSG result of AHI
MATERIAL AND METHODS: RCTs comparing postoperative comorbid disease resolution such as hypertension, dyslipidemia, obstructive sleep apnea, joint and musculoskeletal conditions, gastroesophageal reflux disease, and menstrual irregularities following LVSG and LRYGB were included for analysis. The studies were selected from PubMed, Medline, EMBASE, Science Citation Index, Current Contents, and the Cochrane database and reported on at least one comorbidity resolution or improvement. The present work was undertaken according to the Preferred Reporting Items of Systematic Reviews and Meta-Analyses (PRISMA). The Jadad method for assessment of methodological quality was applied to the included studies.
RESULTS: Six RCTs performed between 2005 and 2015 involving a total of 695 patients (LVSG n = 347, LRYGB n = 348) reported on the resolution or improvement of comorbid disease following LVSG and LRYGB procedures. Both bariatric procedures provide effective and almost comparable results in improving or resolving these comorbidities.
CONCLUSIONS: This systematic review of RCTs suggests that both LVSG and LRYGB are effective in resolving or improving preoperative nondiabetic comorbid diseases in obese patients. While results are not conclusive at this time, LRYGB may provide superior results compared to LVSG in mediating the remission and/or improvement in some conditions such as dyslipidemia and arthritis.
METHODS: After institutional approval and written informed consent, patients received a brief remifentanil infusion during continuous monitoring of ventilation. We compared minute ventilation in 30 patients with moderate-to-severe obstructive sleep apnea diagnosed by polysomnography and 20 controls with no to mild obstructive sleep apnea per polysomnography. Effect site concentrations were estimated by a published pharmacologic model. We modeled minute ventilation as a function of effect site concentration and the estimated carbon dioxide. Obstructive sleep apnea status, body mass index, sex, age, use of continuous positive airway pressure, apnea/hypopnea events per hour of sleep, and minimum nocturnal oxygen saturation measured by pulse oximetry in polysomnography were tested as covariates for remifentanil effect site concentration at half-maximal depression of minute ventilation (Ce50) and included in the model if a threshold of 6.63 (P < 0.01) in the reduction of objective function was reached and improved model fit.
RESULTS: Our model described the observed minute ventilation with reasonable accuracy (22% median absolute error). We estimated a remifentanil Ce50 of 2.20 ng · ml (95% CI, 2.09 to 2.33). The estimated value for Ce50 was 2.1 ng · ml (95% CI, 1.9 to 2.3) in patients without obstructive sleep apnea and 2.3 ng · ml (95% CI, 2.2 to 2.5) in patients with obstructive sleep apnea, a statistically nonsignificant difference (P = 0.081). None of the tested covariates demonstrated a significant effect on Ce50. Likelihood profiling with the model including obstructive sleep apnea suggested that the effect of obstructive sleep apnea on remifentanil Ce50 was less than 5%.
CONCLUSIONS: Obstructive sleep apnea status, apnea/hypopnea events per hour of sleep, or minimum nocturnal oxygen saturation measured by pulse oximetry did not influence the sensitivity to remifentanil-induced ventilatory depression in awake patients receiving a remifentanil infusion of 0.2 μg · kg of ideal body weight per minute.
PURPOSE: The present study aims to look at the association between CH and severity of OSAS, and whether CH could be another link between OSAS and the development of glaucoma.
METHODS: This was a cross-sectional, observational study at the University Malaya Medical Centre, Kuala Lumpur. Patients undergoing polysomnography for assessment of OSAS were recruited. We measured central corneal thickness (CCT) using optical biometry, and CH using ocular response analysis. Intraocular pressure (IOP) and Humphrey visual field (HVF) indices were also measured. The Apnea Hypopnea Index (AHI) divided patients into normal, mild, moderate, and severe OSAS categories. The normal and mild categories (47.9%) were then collectively called group 1, and the moderate and severe categories (52.1%) were called group 2. T tests, Pearson correlation tests, and general linear model analysis were performed, with P .05). CH correlated negatively with AHI (r = -0.229, P = .013) and positively with lowest oxygen saturation (r = 0.213, P = .022).
CONCLUSIONS: CH is lower in moderate/severe OSAS than in normal/mild cases. This may be another link between OSAS and the development of glaucoma; further studies are indicated to determine the significance of this connection.
DESIGN AND SETTINGS: This was a cross-sectional study to examine the association between OSA parameters and IR using homeostasis model assessment (HOMA) on patients who underwent polysomnogram (PSG) in a tertiary center between March 2011 and March 2012 (1 year).
PATIENTS AND METHODS: A total of 62 patients underwent PSG within the study period, of which 16 patients were excluded due to abnormal fasting blood sugar. Information on patients' medical illnesses, medications, and Epworth sleepiness scale (ESS) was obtained. Patients' body mass index (BMI), neck circumference, and waist circumference (WC) were measured. Blood samples were collected after 8 hours of fasting to measure HOMA-IR value. Overnight PSG was performed for all patients. Data was recorded and analyzed using SPSS, version 12.0 (SPSS Inc, Chicago, USA).
RESULTS: The prevalence of IR in OSA patients was 64.3%. There was significant correlation between OSA parameters (apnea-hypopnea index, ESS, BMI, and WC) and HOMA-IR with correlation coefficient of 0.529, 0.224, 0.261, and 0.354, respectively.
CONCLUSION: A linear correlation exists between OSA parameters and IR concluding a definite causal link between OSA and IR. IR screening is recommended in severe OSA patients.
OBJECTIVES: To determine the association between obstructive sleep apnea and 30-day risk of cardiovascular complications after major noncardiac surgery.
DESIGN, SETTING, AND PARTICIPANTS: Prospective cohort study involving adult at-risk patients without prior diagnosis of sleep apnea and undergoing major noncardiac surgery from 8 hospitals in 5 countries between January 2012 and July 2017, with follow-up until August 2017. Postoperative monitoring included nocturnal pulse oximetry and measurement of cardiac troponin concentrations.
EXPOSURES: Obstructive sleep apnea was classified as mild (respiratory event index [REI] 5-14.9 events/h), moderate (REI 15-30), and severe (REI >30), based on preoperative portable sleep monitoring.
MAIN OUTCOMES AND MEASURES: The primary outcome was a composite of myocardial injury, cardiac death, heart failure, thromboembolism, atrial fibrillation, and stroke within 30 days of surgery. Proportional-hazards analysis was used to determine the association between obstructive sleep apnea and postoperative cardiovascular complications.
RESULTS: Among a total of 1364 patients recruited for the study, 1218 patients (mean age, 67 [SD, 9] years; 40.2% women) were included in the analyses. At 30 days after surgery, rates of the primary outcome were 30.1% (41/136) for patients with severe OSA, 22.1% (52/235) for patients with moderate OSA, 19.0% (86/452) for patients with mild OSA, and 14.2% (56/395) for patients with no OSA. OSA was associated with higher risk for the primary outcome (adjusted hazard ratio [HR], 1.49 [95% CI, 1.19-2.01]; P = .01); however, the association was significant only among patients with severe OSA (adjusted HR, 2.23 [95% CI, 1.49-3.34]; P = .001) and not among those with moderate OSA (adjusted HR, 1.47 [95% CI, 0.98-2.09]; P = .07) or mild OSA (adjusted HR, 1.36 [95% CI, 0.97-1.91]; P = .08) (P = .01 for interaction). The mean cumulative duration of oxyhemoglobin desaturation less than 80% during the first 3 postoperative nights in patients with cardiovascular complications (23.1 [95% CI, 15.5-27.7] minutes) was longer than in those without (10.2 [95% CI, 7.8-10.9] minutes) (P sleep apnea was significantly associated with increased risk of 30-day postoperative cardiovascular complications. Further research would be needed to assess whether interventions can modify this risk.