In this study, solidification/stabilization (S/S) of nickel hydroxide sludge using ordinary Portland cement (OPC) and oil palm ash (OPA) was carried out. The effects of increased substitution of OPA wt% in the S/S mix designs on the treated samples' physical and chemical characteristics were investigated. The physical characteristics studied were unconfined compressive strength (UCS) and changes in crystalline phases while chemical characteristics studied were leachability of nickel and leachate pH. Results indicated the optimum mix design for S/S of nickel hydroxide sludge using both OPC and OPA at B/S(d)=1 in terms of cost-effectiveness and treatment efficiency was 15 wt% OPA, 35 wt% OPC and 50 wt% sludge. The sufficient UCS and low leached nickel concentrations shown for this mix design indicate the viability of using OPA as substitute of OPC as it can significantly reduce cost normally incurred by usage of high amounts of OPC.
A new method of Standard Malaysian Rubber (SMR) process wastewater treatment was developed based on in situ hypochlorous acid generation. The hypochlorous acid was generated in an undivided electrolytic cell consisting of two sets of graphite as anode and stainless sheets as cathode. The generated hypochlorous acid served as an oxidizing agent to destroy the organic matter present in the SMR wastewater. For an influent COD concentration of 2960 mg/L at an initial pH 4.5+/-0.1, current density 74.5 mA/cm(2), sodium chloride content 3% and electrolysis period of 75 min, resulted in the following residual values pH 7.5, COD 87 mg/L, BOD(5) 60 mg/L, TOC 65 mg/L, total chlorine 146 mg/L, turbidity 7 NTU and temperature 48 degrees C, respectively. In the case of 2% sodium chloride as an electrolyte for the above said operating condition resulted in the following values namely: pH 7.2, COD 165 mg/L, BOD(5) 105 mg/L, TOC 120 mg/L, total chlorine 120 mg/L, turbidity 27 NTU and temperature 53 degrees C, respectively. The energy requirement were found to be 30 and 46 Wh/L, while treating 24 L of SMR wastewater at 2 and 3% sodium chloride concentration at a current density 74.5 mA/cm(2). The observed energy difference was due to the improved conductivity at high sodium chloride content.
A tsunami, triggered by a massive undersea earthquake off Sumatra in Indonesia, greatly devastated the lives, property and infrastructure of coastal communities in the coastal states of India, Andaman and Nicobar Islands, Indonesia, Sri Lanka, Malaysia and Thailand. This event attracted the attention of environmental managers at all levels, local, national, regional and global. It also shifted the focus from the impact of human activities on the environment to the impacts of natural hazards. Recovery/reconstruction of these areas is highly challenging. A clear understanding of the complex dynamics of the coast and the types of challenges faced by the several stakeholders of the coast is required. Issues such as sustainability, equity and community participation assume importance. The concept of ICZM (integrated coastal zone management) has been effectively used in most parts of the world. This concept emphasizes the holistic assessment of the coast and a multidisciplinary analysis using participatory processes. It integrates anthropocentric and eco-centric approaches. This paper documents several issues involved in the recovery of tsunami-affected areas and recommends the application of the ICZM concept to the reconstruction efforts.
MeSH terms: Acetazolamide; Agriculture/legislation & jurisprudence; Animals; Conservation of Natural Resources/legislation & jurisprudence; Conservation of Natural Resources/methods*; Disaster Planning/organization & administration; Disasters*; Female; Fisheries/legislation & jurisprudence; Humans; India; Male; Refuse Disposal; Relief Work; Sex Characteristics; Socioeconomic Factors; Water Supply; Ecosystem*; Indian Ocean; Anthozoa; Environmental Restoration and Remediation/methods*; Tidal Waves*
Concentrations of heavy metals were determined in the water column (including the sea-surface microlayer, subsurface, mid-depth and bottom water) and sediments from Singapore's coastal environment. The concentration ranges for As, Cd, Cr, Cu, Ni, Pb and Zn in the seawater dissolved phase (DP) were 0.34-2.04, 0.013-0.109, 0.07-0.35, 0.23-1.16, 0.28-0.78, 0.009-0.062 and 0.97-3.66 microg L(-1) respectively. The ranges for Cd, Cr, Cu, Ni, Pb and Zn in the suspended particulate matter (SPM) were 0.16-0.73, 6.72-53.93, 12.87-118.29, 4.34-60.71, 1.10-6.08 and 43.09-370.49 microg g(-1), respectively. Heavy metal concentrations in sediments ranged between 0.054-0.217, 37.48-50.52, 6.30-21.01, 13.27-26.59, 24.14-37.28 and 48.20-62.36 microg g(-1) for Cd, Cr, Cu, Ni, Pb and Zn, respectively. The lowest concentrations of metals in the DP and SPM were most frequently found in the subsurface water while the highest concentrations were mostly observed in the SML and bottom water. Overall, heavy metals in both the dissolved and particulate fractions have depth profiles that show a decreasing trend of concentrations from the subsurface to the bottom water, indicating that the prevalence of metals is linked to the marine biological cycle. In comparison to data from Greece, Malaysia and USA, the levels of metals in the DP are considered to be low in Singapore. Higher concentrations of particulate metals were reported for the Northern Adriatic Sea and the Rhine/Meuse estuary in the Netherlands compared to values reported in this study. The marine sediments in Singapore are not heavily contaminated when compared to metal levels in marine sediments from other countries such as Thailand, Japan, Korea, Spain and China.
In order to produce sufficient food supply for the ever-increasing human population, pesticides usage is indispensable in the agriculture sector to control crop losses. However, the effect of pesticides on the environment is very complex as undesirable transfers occur continually among different environmental sections. This eventually leads to contamination of drinking water source especially for rivers located near active agriculture practices. This paper studied the application of nanofiltration membrane in the removal of dimethoate and atrazine in aqueous solution. Dimethoate was selected as the subject of study since it is being listed as one of the pesticides in guidelines for drinking water by World Health Organization. Nevertheless, data on effectiveness of dimethoate rejection using membranes has not been found so far. Meanwhile, atrazine is classified as one of the most commonly used pesticides in Malaysia. Separation was done using a small batch-type membrane separation cell with integrated magnetic stirrer while concentration of dimethoate and atrazine in aqueous solution was analyzed using high performance liquid chromatography (HPLC). Four nanofiltration membranes NF90, NF200, NF270 and DK were tested for their respective performance to separate dimethoate and atrazine. Of all four membranes, NF90 showed the best performance in retention of dimethoate and atrazine in water.
Cockles (Anadara granosa) sample obtained from two rivers in the Penang State of Malaysia were analyzed for the content of arsenic (As) and heavy metals (Cr, Cd, Zn, Cu, Pb, and Hg) using a graphite flame atomic absorption spectrometer (GF-AAS) for Cr, Cd, Zn, Cu, Pb, As and cold vapor atomic absorption spectrometer (CV-AAS) for Hg. The two locations of interest with 20 sampling points of each location were Kuala Juru (Juru River) and Bukit Tambun (Jejawi River). Multivariate statistical techniques such as multivariate analysis of variance (MANOVA) and discriminant analysis (DA) were applied for analyzing the data. MANOVA showed a strong significant difference between the two rivers in term of As and heavy metals contents in cockles. DA gave the best result to identify the relative contribution for all parameters in discriminating (distinguishing) the two rivers. It provided an important data reduction as it used only two parameters (Zn and Cd) affording more than 72% correct assignations. Results indicated that the two rivers were different in terms of As and heavy metal contents in cockle, and the major difference was due to the contribution of Zn and Cd. A positive correlation was found between discriminate functions (DF) and Zn, Cd and Cr, whereas negative correlation was exhibited with other heavy metals. Therefore, DA allowed a reduction in the dimensionality of the data set, delineating a few indicator parameters responsible for large variations in heavy metals and arsenic content. Taking into account of these results, it can be suggested that a continuous monitoring of As and heavy metals in cockles be performed in these two rivers.
Nitrates in different water and wastewater streams raised concerns due to severe impacts on human and animal health. Diverse methods are reported to remove nitrate from water streams which almost fail to entirely treat nitrate, except biological denitrification which is capable of reducing inorganic nitrate compounds to harmless nitrogen gas. Review of numerous studies in biological denitrification of nitrate containing water resources, aquaculture wastewaters and industrial wastewater confirmed the potential of this method and its flexibility towards the remediation of different concentrations of nitrate. The denitrifiers could be fed with organic and inorganic substrates which have different performances and subsequent advantages or disadvantages. Review of heterotrophic and autotrophic denitrifications with different food and energy sources concluded that autotrophic denitrifiers are more effective in denitrification. Autotrophs utilize carbon dioxide and hydrogen as the source of carbon substrate and electron donors, respectively. The application of this method in bio-electro reactors (BERs) has many advantages and is promising. However, this method is not so well established and documented. BERs provide proper environment for simultaneous hydrogen production on cathodes and appropriate consumption by immobilized autotrophs on these cathodes. This survey covers various designs and aspects of BERs and their performances.
Polymer electrolytes based on poly(ethylene oxide)-lithium triflate (PEO-LiCF3SO3) and poly(ethylene oxide)-lithium sulphate (PEO-Li2S4) were prepared by using solution casting method. Measurements of conductivity and dielectric were carried out on these films as a function of frequency at various temperatures. It was observed that PEO-LiCF3SO3 polymer electrolytes have higher conductivity. The interaction between PEO and Li salts were studied by Fourier transform infrared (FTIR).
Tropical deforestation is occurring at an alarming rate, threatening the ecological integrity of protected areas. This makes it vital to regularly assess protected areas to confirm the efficacy of measures that protect that area from clearing. Satellite remote sensing offers a systematic and objective means for detecting and monitoring deforestation. This paper examines a spectral change approach to detect deforestation using pattern decomposition (PD) coefficients from multitemporal Landsat data. Our results show that the PD coefficients for soil and vegetation can be used to detect deforestation using change vector analysis (CVA). CVA analysis demonstrates that deforestation in the Kinabalu area, Sabah, Malaysia has significantly slowed from 1.2% in period 1 (1973 and 1991) to 0.1% in period 2 (1991 and 1996). A comparison of deforestation both inside and outside Kinabalu Park has highlighted the effectiveness of the park in protecting the tropical forest against clearing. However, the park is still facing pressure from the area immediately surrounding the park (the 1 km buffer zone) where the deforestation rate has remained unchanged.
Six alkaloids belonging to the methyl chanofruticosinate group, viz., prunifolines A-F, in addition to six other known methyl chanofruticosinate alkaloids, were isolated from the leaf extract of Kopsia arborea. The structures were determined using NMR and MS analysis and comparison with known related compounds.
MeSH terms: Alkaloids/chemistry*; Magnetic Resonance Spectroscopy; Molecular Structure; Apocynaceae/chemistry*
An outbreak of Burkholderia cepacia septicaemia occurred in our neonatal unit over a 9-week period in 2001, affecting 23 babies and two died. A second outbreak lasting 8 days occurred a year later, affecting five babies.
Dribbling (sialorrhoea) affects about 10 per cent of patients with chronic neurological disease. The variety of treatments currently available is unsatisfactory. This study was a clinical trial of the efficacy of ultrasound-guided, intraglandular injection of botulinum toxin A for dribbling, performed within the otorhinolaryngology department of the National University of Malaysia. Both pairs of parotid and submandibular glands received 25 U each of botulinum toxin A. Twenty patients were enrolled in the study. The median age was 15 years. All 20 patients (or their carers) reported a distinct improvement in symptoms after injection. Using the Wilcoxon signed rank test, there were significant reductions in dribbling rating score, dribbling frequency score, dribbling severity score, dribbling visual analogue score and towel changes score, comparing pre- and post-injection states (p<0.001). There were no complications or adverse effects during or after the injection procedure. Intraglandular, major salivary gland injection of botulinum toxin A is an effective treatment to reduce dribbling. Ultrasound guidance enhances the accuracy of this procedure and minimises the risk of complication.
Intra-axial dermoid cysts are rare intracranial space occupying lesions, more so in the pediatric age group. Dermoid cysts account for about 0.2 to 1.8% of all intracranial tumors and are commonly located in the cisternal spaces, mainly in the cerebellopontine angle and parasellar cisterns. A purely intra-axial position as reported in this paper is quite exceptional.
Frontoethmoidal encephalomeningocoele is a rare congenital disease in which an intracranial mass protrudes through a midline defect from the anterior cranial fossa into the facial skeleton. The condition affects patients in South East Asian countries, such as Thailand, Burma, Malaysia and Indonesia, with frequency of 1 in 5000. The pathogenesis of encephalocoeles may be regarded as a 'late' neurulation defect during the fourth gestational week. We present a case of frontoethmoidal encephalomeningocoele with corpus callosal agenesis and colpocephaly; this may well be the first report of this combination. The patient had a bulging mass in the middle frontonasal area, with broadening of the nasal bridge and hypertelorism. Computed tomography scans delineated the skull defect and associated brain anomalies. A one-stage, combined transfacial-transcranial approach, correctional procedure was performed. We present here a discussion of the findings, with special reference to the condition's pathogenesis, morphological classification and evolving surgical treatments. Early diagnosis and referral, involving multidisciplinary teamwork, are of paramount importance because of the distorting influence of the extruding mass on facial growth.
MeSH terms: Humans; Infant; Male; Tomography, X-Ray Computed; Treatment Outcome; Skull Base*; Early Diagnosis; Agenesis of Corpus Callosum
Choline-binding proteins (CBP) have been associated with the pathogenesis of Streptococcus pneumoniae. We screened, using PCR, for the presence of genes (cbpA, D, E, G) encoding these proteins in 34 isolates of pneumococci of known serotypes and penicillin susceptibility from invasive and non-invasive disease. All isolates harboured cbpD and cbpE whereas cbpA and cbpG were found in 47% and 59% respectively; the latter were more frequent in vaccine-associated types and together accounted for 77% of these isolates. No association was observed with penicillin susceptibility but 85% of non-invasive isolates were positive for these genes.
A genetic similarity algorithm is introduced in this study to find a group of semantically similar Gene Ontology terms. The genetic similarity algorithm combines semantic similarity measure algorithm with parallel genetic algorithm. The semantic similarity measure algorithm is used to compute the similitude strength between the Gene Ontology terms. Then, the parallel genetic algorithm is employed to perform batch retrieval and to accelerate the search in large search space of the Gene Ontology graph. The genetic similarity algorithm is implemented in the Gene Ontology browser named basic UTMGO to overcome the weaknesses of the existing Gene Ontology browsers which use a conventional approach based on keyword matching. To show the applicability of the basic UTMGO, we extend its structure to develop a Gene Ontology -based protein sequence annotation tool named extended UTMGO. The objective of developing the extended UTMGO is to provide a simple and practical tool that is capable of producing better results and requires a reasonable amount of running time with low computing cost specifically for offline usage. The computational results and comparison with other related tools are presented to show the effectiveness of the proposed algorithm and tools.
The application of low-cost adsorbents obtained from plant wastes as a replacement for costly conventional methods of removing heavy metal ions from wastewater has been reviewed. It is well known that cellulosic waste materials can be obtained and employed as cheap adsorbents and their performance to remove heavy metal ions can be affected upon chemical treatment. In general, chemically modified plant wastes exhibit higher adsorption capacities than unmodified forms. Numerous chemicals have been used for modifications which include mineral and organic acids, bases, oxidizing agent, organic compounds, etc. In this review, an extensive list of plant wastes as adsorbents including rice husks, spent grain, sawdust, sugarcane bagasse, fruit wastes, weeds and others has been compiled. Some of the treated adsorbents show good adsorption capacities for Cd, Cu, Pb, Zn and Ni.