METHODS: An 8-step generic economic model development process was applied to the use case of human leukocyte antigen (HLA)-B*15:02genotyping for prediction of carbamazepine-induced cutaneous reactions, with a user-friendly decision-making tool relying on user-provided input values. This generic model was transparently documented and validated, including cross-validation comparing cost-effectiveness results with 3 country-specific models.
RESULTS: A generic pharmacogenomic use case cost-effectiveness model with decision-making tool was successfully developed and cross-validated using input values for 6 populations which produced consistent results for HLA-B*15:02 screening at country-specific cost-effectiveness threshold values. Differences between the generic and country-specific model results were largely due to differences in model structure and assumptions.
CONCLUSION: This proof on concept demonstrates the feasibility of generic models to provide useful PM economic evidence, supporting their use as a pragmatic and timely approach to address a growing need.
Methods: A cross-sectional study using a validated 20-item questionnaire was conducted among physicians (n=78) and clinical pharmacists (n=45) working in the medical wards of two tertiary hospitals in Malaysia. Knowledge was assessed by six clinical vignettes which were developed based on Beers criteria and the STOPP/START criteria. Other domains of the study were investigated using a four-point or five-point Likert scale.
Results: Of the 82 participants who completed the questionnaire, 65% were physicians, 90.2% had never received training in geriatric medicine, and 70.8% estimated that 25% or more of their patients were elderly. Only six participants (7.3%) had ever used STOPP/START or Beers criteria when prescribing for elderly patients, and 60% of the respondents had never heard of either one of those criteria. The mean score (SD) for the knowledge part was 3.65 (1.46) points, and only 27 participants (22.9%) scored more than four out of a possible six points. Overall, 34% of the participants rated themselves as confident in prescribing for elderly patients, and this was significantly associated with their knowledge score (P=0.02). The mean number (SD) of barriers cited per participant was 6.88 (2.84), with polypharmacy being the most cited barrier.
Conclusions: The majority of the participants had inadequate knowledge and low confidence regarding recommending medications for elderly patients. Continuing education on geriatric pharmacotherapy may be of value for the hospital physicians and pharmacists.
Methods: Four ampoules of intravenous co-trimoxazole were injected into an infusion bag containing either 480 (1:25 v/v), 380 (1:20 v/v), 280 (1:15 v/v) or 180 (1:10 v/v) mL of glucose 5% solution. Three bags for each dilution (total 12 bags) were prepared and stored at room temperature. An aliquot was withdrawn immediately (at 0 hour) and after 0.5, 1, 2 and 4 hours of storage for high-performance liquid-chromatography (HPLC) analysis, and additional samples were withdrawn every half an hour for microscopic examination. Each sample was analysed for the concentration of trimethoprim and sulfamethoxazole using a stability indicating HPLC method. Samples were assessed for pH, change in colour (visually) and for particle content (microscopically) immediately after preparation and on each time of analysis.
Results: Intravenous co-trimoxazole at 1:25, 1:20, 1:15 and 1:10 v/v retained more than 98% of the initial concentration of trimethoprim and sulfamethoxazole for 4 hours. There was no major change in pH at time zero and at various time points. Microscopically, no particles were detected for at least 4 hours and 2 hours when intravenous co-trimoxazole was diluted at 1:25 or 1:20 and 1:15 v/v, respectively. More than 1200 particles/mL were detected after 2.5 hours of storage when intravenous co-trimoxazole was diluted at 1:15 v/v.
Conclusions: Intravenous co-trimoxazole is stable over a period of 4 hours when diluted with 380 mL of glucose 5% solution (1:20 v/v) and for 2 hours when diluted with 280 mL glucose 5% solution (1:15 v/v).
Method: A total of 24 elastomeric devices were prepared, and six elastomeric devices containing 6mg/mL of ceftaroline (three in each type of diluents) were stored at one of the following conditions: 4°C for 6 days, 25°C for 24hours, 30°C for 24hours or 35°C for 24hours. An aliquot was withdrawn before storage and at different time points. Chemical stability was measured using a stability indicating high-performance liquid chromatography, and physical stability was assessed as change in pH, colour and particle content.
Results: Ceftaroline, when admixed with both diluents, was stable for 144, 24 and 12hours at 4°C, 25°C and 30°C, respectively. At 35°C, ceftaroline admixed with normal saline (NS) and glucose 5% was stable for 12hours and for 6hours, respectively. No evidence of particle formation, colour change or pH change was observed throughout the study period.
Conclusions: Our findings support 12 or 24hours continuous elastomeric infusion of ceftaroline-NS admixture, and bulk preparation of elastomeric pumps containing ceftaroline solution in advance. This would facilitate early hospital discharge of patients eligible for the elastomeric-based home therapy and avoid the need for patient's caregivers travelling to the hospital on a daily basis.