Browse publications by year: 2018

  1. Hayakawa K, Kato TA, Watabe M, Teo AR, Horikawa H, Kuwano N, et al.
    Sci Rep, 2018 02 13;8(1):2884.
    PMID: 29440704 DOI: 10.1038/s41598-018-21260-w
    Hikikomori, a severe form of social withdrawal syndrome, is a growing social issue in Japan and internationally. The pathophysiology of hikikomori has not yet been elucidated and an effective treatment remains to be established. Recently, we revealed that avoidant personality disorder is the most common comorbidity of hikikomori. Thus, we have postulated that avoidant personality is the personality underpinning hikikomori. First, we herein show relationships between avoidant personality traits, blood biomarkers, hikikomori-related psychological features, and behavioural characteristics assessed by a trust game in non-hikikomori volunteers. Avoidant personality traits were negatively associated with high-density lipoprotein cholesterol (HDL-C) and uric acid (UA) in men, and positively associated with fibrin degeneration products (FDP) and high sensitivity C-reactive protein (hsCRP) in women. Next, we recruited actual individuals with hikikomori, and compared avoidant personality traits, blood biomarkers, and psychological features between individuals with hikikomori and age-matched healthy controls. Individuals with hikikomori had higher avoidant personality scores in both sexes, and showed lower serum UA levels in men and lower HDL-C levels in women compared with healthy controls. This is the first report showing possible blood biomarkers for hikikomori, and opens the door to clarify the underlying biological pathophysiology of hikikomori.
    MeSH terms: Adult; Cooperative Behavior; Female; Humans; Male; Surveys and Questionnaires; Social Behavior*; Social Isolation; Biomarkers/blood*; Trust; Young Adult
  2. Rath A, Fernandes BA, Sidhu P, Ramamurthy P
    J Indian Soc Periodontol, 2018 2 15;21(3):245-248.
    PMID: 29440795 DOI: 10.4103/jisp.jisp_221_17
    New and innovative surgical techniques are necessary to help the clinician ensure the best results and satisfy patient's expectations. One such periodontal problem that has been challenging to the dental practitioners and impacts the oral health quality of life of patients has been gingival recession. When present anteriorly where esthetics is a major concern, patient centric parameters too become paramount. Root coverage esthetic score (RES) evaluation helps to keep the patient outcomes in mind. This case reports the successful treatment of a wide anterior mucogingival defect using epithelial embossed connective tissue graft which was evaluated for the first time using RES.
    MeSH terms: Connective Tissue; Esthetics; Gingival Recession; Gingivoplasty; Humans; Oral Health; Quality of Life
  3. Donald PM, Renjith G, Arora A
    J Indian Soc Periodontol, 2018 2 15;21(3):249-251.
    PMID: 29440796 DOI: 10.4103/jisp.jisp_109_17
    Smokeless tobacco is used orally or nasally without burning tobacco. This is equally harmful as smokers due to the tobacco content and can cause oral cancer as well as systemic effects such as nicotinic dependence. Many other oral conditions have also been reported in association with smokeless tobacco. This paper presents features of tobacco pouch keratosis and aims to highlight the oral effects of smokeless tobacco, management, and guidelines for dentists in educating and counselling tobacco users.
    MeSH terms: Counseling; Dentists; Keratosis; Mouth Diseases; Mouth Neoplasms; Tobacco; Tobacco Use Disorder; Tobacco, Smokeless
  4. Ahmed S, Govender T, Khan I, Rehman NU, Ali W, Shah SMH, et al.
    Drug Des Devel Ther, 2018;12:255-269.
    PMID: 29440875 DOI: 10.2147/DDDT.S148912
    Background and aim: The challenges with current antimicrobial drug therapy and resistance remain a significant global health threat. Nanodrug delivery systems are playing a crucial role in overcoming these challenges and open new avenues for effective antimicrobial therapy. While fluticasone (FLU), a poorly water-soluble corticosteroid, has been reported to have potential antimicrobial activity, approaches to optimize its dissolution profile and antimicrobial activity are lacking in the literature. This study aimed to combine an experimental study with molecular modeling to design stable FLU nanopolymeric particles with enhanced dissolution rates and antimicrobial activity.

    Methods: Six different polymers were used to prepare FLU nanopolymeric particles: hydroxyl propyl methylcellulose (HPMC), poly (vinylpyrrolidone) (PVP), poly (vinyl alcohol) (PVA), ethyl cellulose (EC), Eudragit (EUD), and Pluronics®. A low-energy method, nanoprecipitation, was used to prepare the polymeric nanoparticles.

    Results and conclusion: The combination of HPMC-PVP and EUD-PVP was found most effective to produce stable FLU nanoparticles, with particle sizes of 250 nm ±2.0 and 280 nm ±4.2 and polydispersity indices of 0.15 nm ±0.01 and 0.25 nm ±0.03, respectively. The molecular modeling studies endorsed the same results, showing highest polymer drug binding free energies for HPMC-PVP-FLU (-35.22 kcal/mol ±0.79) and EUD-PVP-FLU (-25.17 kcal/mol ±1.12). In addition, it was observed that Ethocel® favored a wrapping mechanism around the drug molecules rather than a linear conformation that was witnessed for other individual polymers. The stability studies conducted for 90 days demonstrated that HPMC-PVP-FLU nanoparticles stored at 2°C-8°C and 25°C were more stable. Crystallinity of the processed FLU nanoparticles was confirmed using differential scanning calorimetry, powder X-ray diffraction analysis and TEM. The Fourier transform infrared spectroscopy (FTIR) studies showed that there was no chemical interaction between the drug and chosen polymer system. The HPMC-PVP-FLU nanoparticles also showed enhanced dissolution rate (P<0.05) compared to the unprocessed counterpart. The in vitro antibacterial studies showed that HPMC-PVP-FLU nanoparticles displayed superior effect against gram-positive bacteria compared to the unprocessed FLU and positive control.

    MeSH terms: Fluticasone/pharmacology*; Fluticasone/chemistry; Anti-Bacterial Agents/pharmacology*; Anti-Bacterial Agents/chemistry; Crystallization; Drug Carriers*; Drug Compounding; Drug Stability; Polymers/chemistry*; Polymethacrylic Acids/chemistry; Povidone/chemistry; Solubility; Technology, Pharmaceutical/methods; Molecular Structure; Nanomedicine; Nanoparticles*; Molecular Dynamics Simulation*; Molecular Docking Simulation*; Hypromellose Derivatives/chemistry; Drug Liberation
  5. Ting RS, Wong EL, Tnay JK
    PMID: 29440937 DOI: 10.2147/OAJC.S152505
    Background: Female condom (FC) has been available for over 30 years, but it still lacks wide acceptability. To overcome misdirection and invagination occurring in FC and to provide a wider area of protection, Wondaleaf®(WL), a new-generation adhesive FC, was recently invented. This pioneering study sought to assess the acceptability and functional performance of WL among Malaysian women.

    Methods: A mixed method survey was conducted in three cities of Malaysia, recruiting sexually active heterosexual women, aged 18-50, by snowball sampling method. Participants were provided with WL and initially surveyed to rate its performance in five coital usages over 2 months. After that, the participants underwent a second survey to rate their satisfaction and acceptability toward WL. Descriptive statistics on clinical failure rates were tabulated with correlational analysis performed to identify major variables contributing to WL's functional performance and acceptability.

    Results: Out of the 51 enrolled participants, 31 women completed the required surveys. WL's total clinical failure rate was 2.60% (out of 155 condom uses) with above-average ratings of functional performance. The ease of use significantly correlated with ratings of no slippage and no misdirection. The confidence in WL's safety features significantly correlated with a sense of empowerment and protection.

    Conclusion: WL has a relatively low risk of clinical failures and an overall favorable acceptability among Malaysian women. However, this study also showed that its future usage largely depends on partner acceptability. It may have the potential of complementing the existing barrier toward contraceptive use. Further studies are needed to understand the global acceptability of WL.

  6. Nadarajan VS
    Transfusion, 2018 05;58(5):1189-1198.
    PMID: 29441590 DOI: 10.1111/trf.14538
    BACKGROUND: Antibodies to Mia , MUT, and Mur are among the most frequently identified alloantibodies in Southeast Asia. Understanding the characteristics of these antibodies in terms of induction and evanescence would aid in optimizing methods for their detection.

    STUDY DESIGN AND METHODS: Antibody testing results between the years 2013 and 2015 with relevant patient demographic data and red blood cell (RBC) transfusion history were retrieved. Cumulative alloimmunization incidence and evanescence to MUT and Mur were estimated by Kaplan-Meier analysis in relation to the number of RBC units transfused and time.

    RESULTS: Of 70,543 selected patients, 6186 nonalloimmunized subjects with available antibody testing results posttransfusion were identified. Cumulative alloimmunization incidence for MUT increased from 0.12% (95% confidence interval [CI], 0.03-0.21) to 0.63% (95% CI, 0.25-1.01), while for Mur it increased from 0.04% (95% CI, 0-0.09) to 0.42% (95% CI, 0.05-0.79) when a patient was transfused 2 RBC units as compared to 12. Both antibodies had high evanescence rates and at 1 year, anti-MUT and -Mur will be detected in only 45% (95% CI, 35%-57%) and 27% (95% CI, 17%-43%), respectively, of previously positive patients. MUT and Mur immunogenicity was estimated to be 1.7 and 1.2 times higher than E when their rate of evanescence was taken into account.

    CONCLUSION: Antibodies to MUT and Mur develop following multiple RBC exposures. Immunogenicity of MUT/Mur and evanescence rates of the corresponding antibodies is higher compared to anti-E. Appropriate selection of antibody screening cells is needed in view of the high prevalence, immunogenicity, and evanescence of the antibodies.

    MeSH terms: Blood Group Antigens/immunology*; Erythrocytes/immunology*; Humans; Isoantibodies/immunology*; Prevalence; Erythrocyte Transfusion; Asian Continental Ancestry Group/genetics
  7. Brandon-Mong GJ, Littlefair JE, Sing KW, Lee YP, Gan HM, Clare EL, et al.
    Bull. Entomol. Res., 2018 Dec;108(6):792-799.
    PMID: 29441836 DOI: 10.1017/S000748531800010X
    Arthropod communities in the tropics are increasingly impacted by rapid changes in land use. Because species showing distinct seasonal patterns of activity are thought to be at higher risk of climate-related extirpation, global warming is generally considered a lower threat to arthropod biodiversity in the tropics than in temperate regions. To examine changes associated with land use and weather variables in tropical arthropod communities, we deployed Malaise traps at three major anthropogenic forests (secondary reserve forest, oil palm forest, and urban ornamental forest (UOF)) in Peninsular Malaysia and collected arthropods continuously for 12 months. We used metabarcoding protocols to characterize the diversity within weekly samples. We found that changes in the composition of arthropod communities were significantly associated with maximum temperature in all the three forests, but shifts were reversed in the UOF compared with the other forests. This suggests arthropods in forests in Peninsular Malaysia face a double threat: community shifts and biodiversity loss due to exploitation and disturbance of forests which consequently put species at further risk related to global warming. We highlight the positive feedback mechanism of land use and temperature, which pose threats to the arthropod communities and further implicates ecosystem functioning and human well-being. Consequently, conservation and mitigation plans are urgently needed.
    MeSH terms: Animals; Arthropods/physiology*; Malaysia; Population Dynamics; Rain*; Seasons; Temperature; Arecaceae/growth & development; Biodiversity*; Forests*
  8. Mohammed AH, Ahmad MB, Ibrahim NA, Zainuddin N
    Chem Cent J, 2018 Feb 13;12(1):15.
    PMID: 29442180 DOI: 10.1186/s13065-018-0379-4
    BACKGROUND: The incorporation of two different monomers, having different properties, in the same polymer molecule leads to the formation of new materials with great scientific and commercial importance. The basic requirements for polymeric materials in some areas of biomedical applications are that they are hydrophilic, having good mechanical and thermal properties, soft, and oxygen-permeable.

    RESULTS: A series of 3-(trimethoxysilyl) propyl methacrylate/N-vinyl pyrrolidone (TMSPM/NVP) xerogels containing different concentration of ethylene glycol dimethacrylate (EGDMA) as crosslinking agent were prepared by bulk polymerization to high conversion using BPO as initiator. The copolymers were characterized by FTIR. The corresponding hydrogels were obtained by swelling the xerogels in deionized water to equilibrium. Addition of EGDMA increases the transparency of xerogels and hydrogels. The minimum amount of EGDMA required to produce a transparent xerogel is 1%. All the Swelling parameters, including water content (EWC), volume fraction of polymer (ϕ2) and weight loss during swelling decrease with increasing EGDMA. Young's and shear modulus (E and G) increase as EGDMA increases. The hydrogels were characterized in terms of modulus cross-linking density (veand vt) and polymer-solvent interaction parameters (χ). Thermal properties include TGA and glass transition temperature (Tg) enhance by adding EGDMA whereas the oxygen permeability (P) of hydrogels decreases as water content decrease.

    CONCLUSIONS: This study prepared and studied the properties for new copolymer (TMSPM-co-NVP) contains different amounts of (EGDMA). These copolymers possess new properties with potential use in different biomedical applications. The properties of the prepared hydrogels are fit with the standard properties of materials which should be used for contact lenses.

  9. Norsyuhada W, Shukri WM, Bidin N, Islam S, Krishnan G
    J Nanosci Nanotechnol, 2018 Jul 01;18(7):4841-4851.
    PMID: 29442664 DOI: 10.1166/jnn.2018.15358
    Au-Ag alloy nanoparticles are physically synthesized using rapid, simple and efficient Q-switched Nd:YAG pulsed laser ablation in liquid technique (PLAL). Au and Ag colloidal solutions are separately prepared by 1064 nm laser ablation of metallic target (gold and silver) which is immersed in deionized water. Au-Ag alloy nanoparticles are prepared by irradiating the mixture of Au and Ag colloidal solutions with 532 nm of second harmonic wavelength of Nd:YAG laser at three different ratio, 3:1, 1:1 and 1:3 within different exposure times. The three of plasmon absorption bands of Au-Ag nanoparticles are shifted linearly to the lower wavelength [499.67 nm (3:1), 481.25 nm (1:1), 467.91 nm (1:3)], as compared to plasmon absorption spectra of pure Au (520 nm) and Ag (400 nm). Moreover, the change in colors are also observed from red (Au) and yellow (Ag) to orange, brown and green color due to the Au-Ag alloy formations, respectively. Transmission electron microscopy shows the Ag shell around the inner core of Au spherical metal with broad size distribution due to the three different volume ratio, respectively (1.7 nm, 0.7 nm, 1.4 nm). Energy-dispersive X-ray spectroscopy analysis confirms the presence of Au and Ag elements in Au-Ag alloy nanoparticles without any contaminations. Attenuated total reflectance fourier transform infrared spectroscopy analysis also confirms the homogenous Au-Ag alloys chemical bonding.
    MeSH terms: Alloys; Color; Gold; Silver; Water; X-Rays; Spectroscopy, Fourier Transform Infrared; Citrus sinensis; Microscopy, Electron, Transmission; Laser Therapy; Metal Nanoparticles; Lasers, Solid-State
  10. Rozi SKM, Shahabuddin S, Manan NSA, Mohamad S, Kamal SAA, Rahman SA
    J Nanosci Nanotechnol, 2018 May 01;18(5):3248-3256.
    PMID: 29442825 DOI: 10.1166/jnn.2018.14699
    The present work highlights the facile synthesis of hydrophobic palm fatty acid functionalized Fe3O4 nanoparticles (MNP-FA) for the efficient removal of oils from the surface of water. An intense hydrophobic layer was introduced on the surface of Fe3O4 nanoparticles functionalized by the palm fatty acid obtained from the hydrolysis of palm olein. Scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), Energy dispersive X-ray spectroscopy (EDX) and water contact angle analysis (WCA) measurements were used to characterize the newly fabricated palm fatty acid adorned magnetic Fe3O4 nanoparticles (MNP-FA). The obtained results confirmed the successful synthesis of palm fatty acid-functionalized magnetic nanoparticles. Oil removal tests performed with MNP-FA revealed that this newly prepared material could selectively adsorb lubricating oil up to 3.5 times of the particles' weight while completely repelling water. The main parameters affecting the adsorption of oil i.e., sorption time, mass of sorbent and pH of water were optimized.
    MeSH terms: Adsorption; Fatty Acids; Hydrolysis; Magnetics; Microscopy, Electron, Scanning; Oils; Spectrometry, X-Ray Emission; Water; Hydrophobic and Hydrophilic Interactions; Magnetite Nanoparticles
  11. Chengzheng W, Jiazhi W, Shuangjiang C, Swamy MK, Sinniah UR, Akhtar MS, et al.
    J Nanosci Nanotechnol, 2018 May 01;18(5):3673-3681.
    PMID: 29442882 DOI: 10.1166/jnn.2018.15364
    Nanobiotechnology has emerged as a promising technology to develop new therapeutically active nanomaterials. The present study was aimed to biosynthesize AgNPs extracellularly using Aspergillus niger JX556221 fungal extract and to evaluate their anticancer potential against colon cancer cell line, HT-29. UV-visible spectral characterization of the synthesized AgNPs showed higher absorption peak at 440 nm wavelength. Transmission Electron Microscopy (TEM) analysis revealed the monodispersed nature of synthesized AgNPs occurring in spherical shape with a size in the range of 20-25 nm. Further, characterization using Energy Dispersive Spectroscopy (EDX) confirmed the face-centred cubic crystalline structure of metallic AgNPs. FTIR data revealed the occurrence of various phytochemicals in the cell free fungal extract which substantiated the fungal extract mediated AgNPs synthesis. The cytotoxic effect of AgNPs was studied by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results evidenced the cytotoxic effect of AgNPs on HT-29 cell lines in a dose dependent manner. The highest activity was found at 100 μg/ml concentration after 24 h of incubation. Use of propidium iodide staining examination method confirmed the cytotoxic effect of AgNPs through inducing cell apoptosis. AgNPs cytotoxicity was found to be through elevating reactive oxygen species (ROS), and caspase-3 activation resulting in induced apoptosis. Therefore, this research finding provides an insight towards the development of novel anticancer agents using biological sources.
    MeSH terms: Aspergillus niger; Cell Line; Colonic Neoplasms/drug therapy*; Humans; Plant Extracts/therapeutic use*; Silver*; Metal Nanoparticles/therapeutic use*
  12. Kafi AKM, Yam CCL, Azmi NS, Yusoff MM
    J Nanosci Nanotechnol, 2018 Apr 01;18(4):2422-2428.
    PMID: 29442911 DOI: 10.1166/jnn.2018.14327
    In this work, the direct electrochemistry of hemoglobin (Hb), which was immobilized on carbonyl functionalized single walled carbon nanotube (SWCNT) and deposited onto a gold (Au) electrode has been described. The synthesis of the network of crosslinked SWCNT/Hb was done with the help of crosslinking agent EDC (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide). The UV-Vis and FTIR spectroscopy of SWCNT/Hb networks showed that Hb maintained its natural structure and kept good stability. In addition with this, scanning electron microscopy (SEM) illustrated that SWCNT/Hb networks had a featured layered structure and Hb being strongly liked with SWCNT surface. Cyclic voltammetry (CV) was used to study and to optimize the performance of the resulting modified electrode. The cyclic voltammetric (CV) responses of SWCNT/Hb networks in pH 7.0 exhibit prominent redox couple for the FeIII/II redox process with a midpoint potential of -0.46 V and -0.34, cathodic and anodic respectively. Furthermore, SWCNT/Hb networks are utilized for the detection of hydrogen peroxide (H2O2). Electrochemical measurements reveal that the resulting SWCNT/Hb electrodes display high electrocatalytic activity to H2O2 with high sensitivity, wide linear range, and low detection limit. Overall, the electrochemical results are due to excellent biocompatibility and excellent electron transport efficiency of CNT as well as high Hb loading and synergistic catalytic effect of the modified electrode toward H2O2.
    MeSH terms: Carbon; Catalysis*; Electrochemistry*; Electrodes*; Hemoglobins/chemistry*; Hydrogen Peroxide/chemistry*; Biosensing Techniques; Nanotubes, Carbon/chemistry*
  13. Sung TC, Li HF, Higuchi A, Ling QD, Yang JS, Tseng YC, et al.
    J Vis Exp, 2018 02 03.
    PMID: 29443075 DOI: 10.3791/57314
    The effect of physical cues, such as the stiffness of biomaterials on the proliferation and differentiation of stem cells, has been investigated by several researchers. However, most of these investigators have used polyacrylamide hydrogels for stem cell culture in their studies. Therefore, their results are controversial because those results might originate from the specific characteristics of the polyacrylamide and not from the physical cue (stiffness) of the biomaterials. Here, we describe a protocol for preparing hydrogels, which are not based on polyacrylamide, where various stem, cells including human embryonic stem (ES) cells and human induced pluripotent stem (iPS) cells, can be cultured. Hydrogels with varying stiffness were prepared from bioinert polyvinyl alcohol-co-itaconic acid (P-IA), with stiffness controlled by crosslinking degree by changing crosslinking time. The P-IA hydrogels grafted with and without oligopeptides derived from extracellular matrix were investigated as a future platform for stem cell culture and differentiation. The culture and passage of amniotic fluid stem cells, adipose-derived stem cells, human ES cells, and human iPS cells is described in detail here. The oligopeptide P-IA hydrogels showed superior performances, which were induced by their stiffness properties. This protocol reports the synthesis of the biomaterial, their surface manipulation, along with controlling the stiffness properties and finally, their impact on stem cell fate using xeno-free culture conditions. Based on recent studies, such modified substrates can act as future platforms to support and direct the fate of various stem cells line to different linkages; and further, regenerate and restore the functions of the lost organ or tissue.
    MeSH terms: Cells, Cultured; Humans; Polyvinyl Alcohol/pharmacology; Polyvinyl Alcohol/therapeutic use*; Pluripotent Stem Cells/cytology; Pluripotent Stem Cells/metabolism*; Induced Pluripotent Stem Cells/cytology
  14. de Carvalho LP, Fong A, Troughton R, Yan BP, Chin CT, Poh SC, et al.
    Thromb. Haemost., 2018 02;118(2):415-426.
    PMID: 29443374 DOI: 10.1160/TH17-08-0564
    Studies on platelet reactivity (PR) testing commonly test PR only after percutaneous coronary intervention (PCI) has been performed. There are few data on pre- and post-PCI testing. Data on simultaneous testing of aspirin and adenosine diphosphate antagonist response are conflicting. We investigated the prognostic value of combined serial assessments of high on-aspirin PR (HASPR) and high on-adenosine diphosphate receptor antagonist PR (HADPR) in patients with acute coronary syndrome (ACS). HASPR and HADPR were assessed in 928 ACS patients before (initial test) and 24 hours after (final test) coronary angiography, with or without revascularization. Patients with HASPR on the initial test, compared with those without, had significantly higher intraprocedural thrombotic events (IPTE) (8.6 vs. 1.2%, p ≤ 0.001) and higher 30-day major adverse cardiovascular and cerebrovascular events (MACCE; 5.2 vs. 2.3%, p = 0.05), but not 12-month MACCE (13.0 vs. 15.1%, p = 0.50). Patients with initial HADPR, compared with those without, had significantly higher IPTE (4.4 vs. 0.9%, p = 0.004), but not 30-day (3.5 vs. 2.3%, p = 0.32) or 12-month MACCE (14.0 vs. 12.5%, p = 0.54). The c-statistic of the Global Registry of Acute Coronary Events (GRACE) score alone, GRACE score + ASPR test and GRACE score + ADPR test for discriminating 30-day MACCE was 0.649, 0.803 and 0.757, respectively. Final ADPR was associated with 30-day MACCE among patients with intermediate-to-high GRACE score (adjusted odds ratio [OR]: 4.50, 95% confidence interval [CI]: 1.14-17.66), but not low GRACE score (adjusted OR: 1.19, 95% CI: 0.13-10.79). In conclusion, both HASPR and HADPR predict ischaemic events in ACS. This predictive utility is time-dependent and risk-dependent.
    MeSH terms: Aged; Aspirin/pharmacology; Blood Platelets/metabolism*; Cardiovascular Diseases; Female; Humans; Male; Middle Aged; Myocardial Revascularization; Prognosis; Prospective Studies; Registries; Risk Factors; Thrombosis; Odds Ratio; Coronary Angiography; Acute Coronary Syndrome/diagnosis*; Acute Coronary Syndrome/metabolism; Percutaneous Coronary Intervention/adverse effects
  15. Seri Masran SNA, Ab Majid AH
    J Med Entomol, 2018 05 04;55(3):760-765.
    PMID: 29444240 DOI: 10.1093/jme/tjy008
    Due to the growing public health and tourism awareness, Cimex hemipterus Fabricius (Hemiptera: Cimicidae) has gained a great interest in increasing reported infestation cases in tropical regions of the world, including Malaysia. Since the information on the molecular ecology and population biology of this species are tremendously lacking, the isolation and development of molecular markers can be used to determine its genetic structure. In this study, novel microsatellite primers isolated from enriched genomic libraries of C. hemipterus were developed using 454 Roche shotgun sequencing. Seven validated polymorphic microsatellite primers were consistently amplified and characterized from 70 tropical bed bugs collected from seven locations throughout Malaysia. The number of alleles per locus identified ranged from 6 to 14. Comparison of loci for overall and between population were done with mean observed and expected heterozygosity were determined at 0.320 and 0.814, 0.320 and 0.727, respectively. Polymorphic information criteria (PIC) valued the markers as highly informative as PIC >0.5. Overall population, they are possibly in Hardy-Weinberg equilibrium with loci Ch_09ttn, Ch_01dn, and Ch_13dn showing signs of a null allele. There were no scoring errors caused by stutter peaks, no large allele dropout was detected for all loci and showed no evidence of linkage disequilibrium. In conclusion, all seven molecular microsatellite markers identified can be beneficially used to gain more information on the population genetic structure and breeding patterns of C. hemipterus as well as the relationship of dispersal and infestation.
    MeSH terms: Animals; Bedbugs/genetics*; Genetic Markers; Malaysia; Microsatellite Repeats*
  16. Siow SL, Mahendran HA, Wong CM, Hardin M, Luk TL
    Asian J Surg, 2018 Mar;41(2):136-142.
    PMID: 27955872 DOI: 10.1016/j.asjsur.2016.11.004
    BACKGROUND/OBJECTIVE: The objective of this study was to compare the outcomes of patients who underwent laparoscopic and open repair of perforated peptic ulcers (PPUs) at our institution.

    METHODS: This is a retrospective review of a prospectively collected database of patients who underwent emergency laparoscopic or open repair for PPU between December 2010 and February 2014.

    RESULTS: A total of 131 patients underwent emergency repair for PPU (laparoscopic repair, n=63, 48.1% vs. open repair, n=68, 51.9%). There were no significant differences in baseline characteristics between both groups in terms of age (p=0.434), gender (p=0.305), body mass index (p=0.180), and presence of comorbidities (p=0.214). Both groups were also comparable in their American Society of Anesthesiologists (ASA) scores (p=0.769), Boey scores 0/1 (p=0.311), Mannheim Peritonitis Index > 27 (p=0.528), shock on admission (p<0.99), and the duration of symptoms > 24 hours (p=0.857). There was no significant difference in the operating time between the two groups (p=0.618). Overall, the laparoscopic group had fewer complications compared with the open group (14.3% vs. 36.8%, p=0.005). When reviewing specific complications, only the incidence of surgical site infection was statistically significant (laparoscopic 0.0% vs. open 13.2%, p=0.003). The other parameters were not statistically significant. The laparoscopic group did have a significantly shorter mean postoperative stay (p=0.008) and lower pain scores in the immediate postoperative period (p<0.05). Mortality was similar in both groups (open, 1.6% vs. laparoscopic, 2.9%, p < 0.99).

    CONCLUSION: Laparoscopic repair resulted in reduced wound infection rates, shorter hospitalization, and reduced postoperative pain. Our single institution series and standardized technique demonstrated lower morbidity rates in the laparoscopic group.

    MeSH terms: Hospitalization; Humans; Morbidity; Pain, Postoperative; Peptic Ulcer Perforation; Laparoscopy; Peritonitis; Retrospective Studies; Surgical Wound Infection; United States; Comorbidity; Body Mass Index; Incidence; Operative Time; Anesthesiologists
  17. Townsend AJ, Retkute R, Chinnathambi K, Randall JWP, Foulkes J, Carmo-Silva E, et al.
    Plant Physiol, 2018 Feb;176(2):1233-1246.
    PMID: 29217593 DOI: 10.1104/pp.17.01213
    Photosynthetic acclimation (photoacclimation) is the process whereby leaves alter their morphology and/or biochemistry to optimize photosynthetic efficiency and productivity according to long-term changes in the light environment. The three-dimensional architecture of plant canopies imposes complex light dynamics, but the drivers for photoacclimation in such fluctuating environments are poorly understood. A technique for high-resolution three-dimensional reconstruction was combined with ray tracing to simulate a daily time course of radiation profiles for architecturally contrasting field-grown wheat (Triticum aestivum) canopies. An empirical model of photoacclimation was adapted to predict the optimal distribution of photosynthesis according to the fluctuating light patterns throughout the canopies. While the photoacclimation model output showed good correlation with field-measured gas-exchange data at the top of the canopy, it predicted a lower optimal light-saturated rate of photosynthesis at the base. Leaf Rubisco and protein contents were consistent with the measured optimal light-saturated rate of photosynthesis. We conclude that, although the photosynthetic capacity of leaves is high enough to exploit brief periods of high light within the canopy (particularly toward the base), the frequency and duration of such sunflecks are too small to make acclimation a viable strategy in terms of carbon gain. This suboptimal acclimation renders a large portion of residual photosynthetic capacity unused and reduces photosynthetic nitrogen use efficiency at the canopy level, with further implications for photosynthetic productivity. It is argued that (1) this represents an untapped source of photosynthetic potential and (2) canopy nitrogen could be lowered with no detriment to carbon gain or grain protein content.
    MeSH terms: Acclimatization/physiology*; Great Britain; Light; Models, Biological*; Photosynthesis/physiology*; Plant Proteins/metabolism; Ribulose-Bisphosphate Carboxylase/metabolism; Triticum/physiology*; Plant Leaves/physiology
  18. Naing C, Whittaker MA
    Infect Dis Poverty, 2018 Feb 09;7(1):10.
    PMID: 29427995 DOI: 10.1186/s40249-018-0392-9
    BACKGROUND: Plasmodium vivax is the most geographically widespread species among human malaria parasites. Immunopathological studies have shown that platelets are an important component of the host innate immune response against malaria infections. The objectives of this study were to quantify thrombocytopaenia in P. vivax malaria patients and to determine the associated risks of severe thrombocytopaenia in patients with vivax malaria compared to patients with P. falciparum malaria.

    MAIN BODY: A systematic review and meta-analysis of the available literature on thrombocytopaenia in P. vivax malaria patients was undertaken. Relevant studies in health-related electronic databases were identified and reviewed. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed. Fifty-eight observational studies (n = 29 664) were included in the current review. Severe thrombocytopaenia (

    MeSH terms: Adult; Child; Female; Humans; Male; Plasmodium falciparum/isolation & purification; Plasmodium falciparum/physiology; Plasmodium vivax/isolation & purification; Plasmodium vivax/physiology; Severity of Illness Index; Thrombocytopenia/etiology; Thrombocytopenia/epidemiology; Thrombocytopenia/parasitology*; Malaria, Falciparum/complications*; Malaria, Falciparum/mortality; Malaria, Falciparum/epidemiology; Malaria, Falciparum/parasitology; Malaria, Vivax/complications*; Malaria, Vivax/mortality; Malaria, Vivax/epidemiology; Malaria, Vivax/parasitology; Observational Studies as Topic
  19. Ser HL, Tan WS, Mutalib NA, Yin WF, Chan KG, Goh BH, et al.
    Braz J Microbiol, 2018 02 02;49(2):207-209.
    PMID: 29428207 DOI: 10.1016/j.bjm.2017.04.012
    Streptomycetes remain as one of the important sources for bioactive products. Isolated from the mangrove forest, Streptomyces gilvigriseus MUSC 26T was previously characterised as a novel streptomycete. The high quality draft genome of MUSC 26T contained 5,213,277bp with G+C content of 73.0%. Through genome mining, several gene clusters associated with secondary metabolites production were revealed in the genome of MUSC 26T. These findings call for further investigations into the potential exploitation of the strain for production of pharmaceutically important compounds.
    MeSH terms: Base Composition; Biological Products/metabolism; Environmental Microbiology*; Streptomyces/genetics*; Streptomyces/isolation & purification; Genome, Bacterial*; Sequence Analysis, DNA; Computational Biology; Wetlands; Metabolic Networks and Pathways/genetics; Secondary Metabolism
  20. Razak MR, Yusof NA, Haron MJ, Ibrahim N, Mohammad F, Kamaruzaman S, et al.
    Int J Biol Macromol, 2018 Jun;112:754-760.
    PMID: 29428390 DOI: 10.1016/j.ijbiomac.2018.02.035
    In the present study, iminodiacetic acid (IDA)-modified kenaf fiber, K-IDA formed by the chemical modification of plant kenaf biomass was tested for its efficacy as a sorbent material towards the purification of waste water. The K-IDA fiber was first characterized by the instrumental techniques like Fourier transform infrared (FTIR) analysis, elemental analysis (CHNSO), and scanning electron microscopy (SEM). On testing for the biosorption, we found that the K-IDA has an increment in the adsorption of Cu2+ ions as compared against the untreated fiber. The Cu2+ ions adsorption onto K-IDA fits very well with the Langmuir model and the adsorption maximum achieved to be 91.74mg/g. Further, the adsorption kinetics observed to be pseudo second-order kinetics model and the Cu2+ ions adsorption is a spontaneous endothermic process. The desorption study indicates a highest percentage of Cu2+ of 97.59% from K-IDA under 1M HCl solution against H2SO4 (72.59%) and HNO3 (68.66%). The reusability study indicates that the efficiency did not change much until the 4th cycle and also providing enough evidence for the engagement of our biodegradable K-IDA fiber towards the removal of Cu2+ ions in real-time waste water samples obtained from the electroplating and wood treatment industries.
    MeSH terms: Adsorption; Hydrogen-Ion Concentration; Imino Acids/chemistry*; Industrial Waste/analysis; Kinetics; Temperature; Water Pollutants, Chemical/isolation & purification; Spectroscopy, Fourier Transform Infrared; Water Purification/methods*; Hibiscus/ultrastructure; Hibiscus/chemistry*; Waste Water*
External Links