Browse publications by year: 2019

  1. You R, Liu J, Wu DB, Qian X, Lyu B, Zhang Y, et al.
    Cancer Manag Res, 2019;11:10239-10248.
    PMID: 31824194 DOI: 10.2147/CMAR.S219722
    Objective: The purpose of this study was to evaluate the cost-effectiveness of the combined use of afatinib and epidermal growth factor receptor (EGFR) testing versus gemcitabine-cisplatin as the first-line treatment for patients with non-small cell lung cancer (NSCLC) in China.

    Methods: A decision-analytic model, based on clinical phase III trials, was developed to simulate patient transitions. Direct costs were estimated from the perspective of the Chinese healthcare system. Quality-adjusted life-years (QALYs) and incremental cost-effectiveness ratios (ICER) were calculated over a 5-year lifetime horizon. Model robustness was conducted in sensitivity analyses.

    Results: For the base case, EGFR mutation testing followed by afatinib treatment for advanced NSCLC increased 0.15 QALYs compared with standard chemotherapy at an additional cost of $5069.12. The ICER for afatinib maintenance was $33,416.39 per QALY gained. The utility of PFS and the cost of afatinib had the most important impact on the ICER. Scenario analyses suggested that when a patient assistance program (PAP) was available, ICER decreased to $22,972.52/QALY lower than the willingness-to-pay (WTP) threshold of China ($26,508/QALY).

    Conclusion: Our results suggest that gene-guided maintenance therapy with afatinib with the PAP might be a cost-effective treatment option compared with gemcitabine - cisplatin in China.

  2. Dayrat B, Goulding TC, Khalil M, Apte D, Tan SH
    Zookeys, 2019;892:27-58.
    PMID: 31824202 DOI: 10.3897/zookeys.892.39524
    A new species, Onchidium melakense Dayrat & Goulding, sp. nov., is described, bringing the total to four known species in the genus Onchidium Buchannan, 1800. Onchidium melakense is a rare species with only nine individuals found at three mangrove sites in the Andaman Islands and the Strait of Malacca (western Peninsular Malaysia and eastern Sumatra). The new species is delineated based on mitochondrial (COI and 16S) and nuclear (ITS2 and 28S) DNA sequences as well as comparative anatomy. Each Onchidium species is characterized by a distinct color and can easily be identified in the field, even in the Strait of Malacca where there are three sympatric Onchidium species. An identification key is provided. In addition, Onchidium stuxbergi (Westerlund, 1883) is recorded for the first time from eastern Sumatra, and Onchidium pallidipes Tapparone-Canefri, 1889, of which the type material is described and illustrated here, is regarded as a new junior synonym of O. stuxbergi.
    MeSH terms: Anatomy, Comparative; Animals; Base Sequence; Cell Nucleus; Indonesia; Malaysia; Mitochondria; Gastropoda; Sympatry; Islands
  3. Norlia M, Jinap S, Nor-Khaizura MAR, Radu S, Samsudin NIP, Azri FA
    Front Microbiol, 2019;10:2602.
    PMID: 31824445 DOI: 10.3389/fmicb.2019.02602
    Aflatoxin contamination in foods is a global concern as they are carcinogenic, teratogenic and mutagenic compounds. The aflatoxin-producing fungi, mainly from the Aspergillus section Flavi, are ubiquitous in nature and readily contaminate various food commodities, thereby affecting human's health. The incidence of aflatoxigenic Aspergillus spp. and aflatoxins in various types of food, especially raw peanuts and peanut-based products along the supply chain has been a concern particularly in countries having tropical and sub-tropical climate, including Malaysia. These climatic conditions naturally support the growth of Aspergillus section Flavi, especially A. flavus, particularly when raw peanuts and peanut-based products are stored under inappropriate conditions. Peanut supply chain generally consists of several major stakeholders which include the producers, collectors, exporters, importers, manufacturers, retailers and finally, the consumers. A thorough examination of the processes along the supply chain reveals that Aspergillus section Flavi and aflatoxins could occur at any step along the chain, from farm to table. Thus, this review aims to give an overview on the prevalence of Aspergillus section Flavi and the occurrence of aflatoxins in raw peanuts and peanut-based products, the impact of aflatoxins on global trade, and aflatoxin management in peanuts with a special focus on peanut supply chain in Malaysia. Furthermore, aflatoxin detection and quantification methods as well as the identification of Aspergillus section Flavi are also reviewed herein. This review could help to shed light to the researchers, peanut stakeholders and consumers on the risk of aflatoxin contamination in peanuts along the supply chain.
  4. Chee PY, Mang M, Lau ES, Tan LT, He YW, Lee WL, et al.
    Front Microbiol, 2019;10:2631.
    PMID: 31824449 DOI: 10.3389/fmicb.2019.02631
    Epinecidin-1 is an antimicrobial peptide derived from the orange-spotted grouper (Epinephelus coioides). The mature epinecidin-1 peptide is predicted to have an amphipathic α-helical structure and a non-helical hydrophilic domain at the C-terminal RRRH. The majority of work studying the potential pharmacological activities of epinecidin-1, utilize synthesized epinecidin-1 (Epi-1), which is made up of 21 amino acids, from the amino acid sequence of 22-42 residues of Epi-1-GFIFHIIKGLFHAGKMIHGLV. The synthetized Epi-1 peptide has been demonstrated to possess diverse pharmacological activities, including antimicrobial, immunomodulatory, anticancer, and wound healing properties. It has also been utilized in different clinical and agricultural fields, including topical applications in wound healing therapy as well as the enhancement of fish immunity in aquaculture. Hence, the present work aims to consolidate the current knowledge and findings on the characteristics and pharmacological properties of epinecidin-1 and its potential applications.
  5. Su KY, Balasubramaniam VRMT
    Front Microbiol, 2019;10:2715.
    PMID: 31824472 DOI: 10.3389/fmicb.2019.02715
    The ability of self-replicating oncolytic viruses (OVs) to preferentially infect and lyse cancer cells while stimulating anti-tumor immunity of the host strongly indicates its value as a new field of cancer therapeutics to be further explored. The emergence of Zika virus (ZIKV) as a global health threat due to its recent outbreak in Brazil has caught the attention of the scientific community and led to the discovery of its oncolytic potential for the treatment of glioblastoma multiforme (GBM), the most common and fatal brain tumor with poor prognosis. Herein, we evaluate the neurotropism of ZIKV relative to the receptor tyrosine kinase AXL and its ligand Gas6 in viral entry and the RNA-binding protein Musashi-1 (MSI1) in replication which are also overexpressed in GBM, suggesting its potential for specific targeting of the tumor. Additionally, this review discusses genetic modifications performed to enhance safety and efficacy of ZIKV as well as speculates future directions for the OV therapy.
    MeSH terms: Zika Virus Infection; Zika Virus; Attention; Brain Neoplasms; Brazil; Disease Outbreaks; Glioblastoma; Prognosis; Proto-Oncogene Proteins; Global Health; RNA-Binding Proteins; Receptor Protein-Tyrosine Kinases; Oncolytic Viruses
  6. Zhou Q, Lin CW, Ng WL, Dai J, Denda T, Zhou R, et al.
    Front Plant Sci, 2019;10:1477.
    PMID: 31824528 DOI: 10.3389/fpls.2019.01477
    Sonerileae/Dissochaeteae (Melastomataceae) comprises ca. 50 genera, two thirds of which occur in Southeast Asia. Phylogenetic relationships within this clade remain largely unclear, which hampers our understanding of its origin, evolution, and biogeography. Here, we explored the use of chloroplast genomes in phylogenetic reconstruction of Sonerileae/Dissochaeteae, by sampling 138 species and 23 genera in this clade. A total of 151 complete plastid genomes were assembled for this study. Plastid genomic data provided better support for the backbone of the Sonerileae/Dissochaeteae phylogeny, and also for relationships among most closely related species, but failed to resolve the short internodes likely resulted from rapid radiation. Trees inferred from plastid genome and nrITS sequences were largely congruent regarding the major lineages of Sonerileae/Dissochaeteae. The present analyses recovered 15 major lineages well recognized in both nrITS and plastid phylogeny. Molecular dating and biogeographical analyses indicated a South American origin for Sonerileae/Dissochaeteae during late Eocene (stem age: 34.78 Mya). Two dispersal events from South America to the Old World were detected in late Eocene (33.96 Mya) and Mid Oligocene (28.33 Mya) respectively. The core Asian clade began to diversify around early Miocene in Indo-Burma and dispersed subsequently to Malesia and Sino-Japanese regions, possibly promoted by global temperature changes and East Asian monsoon activity. Our analyses supported previous hypothesis that Medinilla reached Madagascar by transoceanic dispersal in Miocene. In addition, generic limits of some genera concerned were discussed.
  7. Lim WL, Liau LL, Ng MH, Chowdhury SR, Law JX
    Tissue Eng Regen Med, 2019 Dec;16(6):549-571.
    PMID: 31824819 DOI: 10.1007/s13770-019-00196-w
    BACKGROUND: Tendon and ligament injuries accounted for 30% of all musculoskeletal consultations with 4 million new incidences worldwide each year and thus imposed a significant burden to the society and the economy. Damaged tendon and ligament can severely affect the normal body movement and might lead to many complications if not treated promptly and adequately. Current conventional treatment through surgical repair and tissue graft are ineffective with a high rate of recurrence.

    METHODS: In this review, we first discussed the anatomy, physiology and pathophysiology of tendon and ligament injuries and its current treatment. Secondly, we explored the current role of tendon and ligament tissue engineering, describing its recent advances. After that, we also described stem cell and cell secreted product approaches in tendon and ligament injuries. Lastly, we examined the role of the bioreactor and mechanical loading in in vitro maturation of engineered tendon and ligament.

    RESULTS: Tissue engineering offers various alternative ways of treatment from biological tissue constructs to stem cell therapy and cell secreted products. Bioreactor with mechanical stimulation is instrumental in preparing mature engineered tendon and ligament substitutes in vitro.

    CONCLUSIONS: Tissue engineering showed great promise in replacing the damaged tendon and ligament. However, more study is needed to develop ideal engineered tendon and ligament.

    MeSH terms: Elasticity; Humans; Ligaments/anatomy & histology; Ligaments/pathology; Ligaments/physiology*; Musculoskeletal Diseases/pathology; Musculoskeletal Diseases/therapy; Stem Cells/cytology; Stem Cells/metabolism; Tendons/anatomy & histology; Tendons/pathology; Tendons/physiology*; Tensile Strength; Tissue Engineering*; Stem Cell Transplantation; Tissue Scaffolds/chemistry
  8. Kumbargere Nagraj S, Eachempati P, Uma E, Singh VP, Ismail NM, Varghese E
    Cochrane Database Syst Rev, 2019 Dec 11;12(12):CD012213.
    PMID: 31825092 DOI: 10.1002/14651858.CD012213.pub2
    BACKGROUND: Halitosis or bad breath is a symptom in which a noticeably unpleasant breath odour is present due to an underlying oral or systemic disease. 50% to 60% of the world population has experienced this problem which can lead to social stigma and loss of self-confidence. Multiple interventions have been tried to control halitosis ranging from mouthwashes and toothpastes to lasers. This new Cochrane Review incorporates Cochrane Reviews previously published on tongue scraping and mouthrinses for halitosis.

    OBJECTIVES: The objectives of this review were to assess the effects of various interventions used to control halitosis due to oral diseases only. We excluded studies including patients with halitosis secondary to systemic disease and halitosis-masking interventions.

    SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 8 April 2019), the Cochrane Central Register of Controlled Trials (CENTRAL; 2019, Issue 3) in the Cochrane Library (searched 8 April 2019), MEDLINE Ovid (1946 to 8 April 2019), and Embase Ovid (1980 to 8 April 2019). We also searched LILACS BIREME (1982 to 19 April 2019), the National Database of Indian Medical Journals (1985 to 19 April 2019), OpenGrey (1992 to 19 April 2019), and CINAHL EBSCO (1937 to 19 April 2019). The US National Institutes of Health Ongoing Trials Register ClinicalTrials.gov (8 April 2019), the World Health Organization International Clinical Trials Registry Platform (8 April 2019), the ISRCTN Registry (19 April 2019), the Clinical Trials Registry - India (19 April 2019), were searched for ongoing trials. We also searched the cross-references of included studies and systematic reviews published on the topic. No restrictions were placed on the language or date of publication when searching the electronic databases.

    SELECTION CRITERIA: We included randomised controlled trials (RCTs) which involved adults over the age of 16, and any intervention for managing halitosis compared to another or placebo, or no intervention. The active interventions or controls were administered over a minimum of one week and with no upper time limit. We excluded quasi-randomised trials, trials comparing the results for less than one week follow-up, and studies including advanced periodontitis.

    DATA COLLECTION AND ANALYSIS: Two pairs of review authors independently selected trials, extracted data, and assessed risk of bias. We estimated mean differences (MDs) for continuous data, with 95% confidence intervals (CIs). We assessed the certainty of the evidence using the GRADE approach.

    MAIN RESULTS: We included 44 trials in the review with 1809 participants comparing an intervention with a placebo or a control. The age of participants ranged from 17 to 77 years. Most of the trials reported on short-term follow-up (ranging from one week to four weeks). Only one trial reported long-term follow-up (three months). Three studies were at low overall risk of bias, 16 at high overall risk of bias, and the remaining 25 at unclear overall risk of bias. We compared different types of interventions which were categorised as mechanical debridement, chewing gums, systemic deodorising agents, topical agents, toothpastes, mouthrinse/mouthwash, tablets, and combination methods. Mechanical debridement: for mechanical tongue cleaning versus no tongue cleaning, the evidence was very uncertain for the outcome dentist-reported organoleptic test (OLT) scores (MD -0.20, 95% CI -0.34 to -0.07; 2 trials, 46 participants; very low-certainty evidence). No data were reported for patient-reported OLT score or adverse events. Chewing gums: for 0.6% eucalyptus chewing gum versus placebo chewing gum, the evidence was very uncertain for the outcome dentist-reported OLT scores (MD -0.10, 95% CI -0.31 to 0.11; 1 trial, 65 participants; very low-certainty evidence). No data were reported for patient-reported OLT score or adverse events. Systemic deodorising agents: for 1000 mg champignon versus placebo, the evidence was very uncertain for the outcome patient-reported visual analogue scale (VAS) scores (MD -1.07, 95% CI -14.51 to 12.37; 1 trial, 40 participants; very low-certainty evidence). No data were reported for dentist-reported OLT score or adverse events. Topical agents: for hinokitiol gel versus placebo gel, the evidence was very uncertain for the outcome dentist-reported OLT scores (MD -0.27, 95% CI -1.26 to 0.72; 1 trial, 18 participants; very low-certainty evidence). No data were reported for patient-reported OLT score or adverse events. Toothpastes: for 0.3% triclosan toothpaste versus control toothpaste, the evidence was very uncertain for the outcome dentist-reported OLT scores (MD -3.48, 95% CI -3.77 to -3.19; 1 trial, 81 participants; very low-certainty evidence). No data were reported for patient-reported OLT score or adverse events. Mouthrinse/mouthwash: for mouthwash containing chlorhexidine and zinc acetate versus placebo mouthwash, the evidence was very uncertain for the outcome dentist-reported OLT scores (MD -0.20, 95% CI -0.58 to 0.18; 1 trial, 44 participants; very low-certainty evidence). No data were reported for patient-reported OLT score or adverse events. Tablets: no data were reported on key outcomes for this comparison. Combination methods: for brushing plus cetylpyridium mouthwash versus brushing, the evidence was uncertain for the outcome dentist-reported OLT scores (MD -0.48, 95% CI -0.72 to -0.24; 1 trial, 70 participants; low-certainty evidence). No data were reported for patient-reported OLT score or adverse events.

    AUTHORS' CONCLUSIONS: We found low- to very low-certainty evidence to support the effectiveness of interventions for managing halitosis compared to placebo or control for the OLT and patient-reported outcomes tested. We were unable to draw any conclusions regarding the superiority of any intervention or concentration. Well-planned RCTs need to be conducted by standardising the interventions and concentrations.

    MeSH terms: Adolescent; Adult; Aged; Chewing Gum; Chlorhexidine/therapeutic use; Female; Halitosis/therapy*; Humans; Male; Middle Aged; Mouthwashes/therapeutic use*; Oral Health; Oral Hygiene/methods*; Dental Scaling; Tongue/microbiology; Toothbrushing/methods; Toothpastes; Randomized Controlled Trials as Topic; Young Adult
  9. Mohan D, Sajab MS, Kaco H, Bakarudin SB, Noor AM
    Nanomaterials (Basel), 2019 Dec 03;9(12).
    PMID: 31817002 DOI: 10.3390/nano9121726
    The recognition of nanocellulose has been prominent in recent years as prospect materials, yet the ineffectiveness of nanocellulose to disperse in an organic solvent has restricted its utilization, especially as a reinforcement in polymer nanocomposite. In this study, cellulose has been isolated and defibrillated as cellulose nanofibrils (CNF) from oil palm empty fruit bunch (EFB) fibers. Subsequently, to enhance its compatibility with UV-curable polyurethane (PU)-based resin, the surface hydrophilicity of CNF has been tailored with polyethylene glycol (PEG), as well as reduced graphene oxide (rGO). The dispersibility of reinforced modified CNF in UV-curable PU was examined through the transmittance interruption of resin, chemical, and mechanical properties of the composite printed using the stereolithographic technique. Evidently, the enhanced compatibility of modified CNF and UV-curable PU was shown to improve the tensile strength and hardness of the composites by 37% and 129%, respectively.
    MeSH terms: Cellulose; Fruit; Graphite; Hardness; Polyethylene Glycols; Polymers; Polysaccharides; Polyurethanes; Solvents; Tensile Strength; Nanocomposites; Hydrophobic and Hydrophilic Interactions
  10. Zakaria ZA, Kamisan FH, Mohd Nasir N, Teh LK, Salleh MZ
    Nutrients, 2019 Dec 04;11(12).
    PMID: 31817058 DOI: 10.3390/nu11122945
    This study aimed to determine the antioxidant and hepatoprotective activities of semi-purified aqueous partition obtained from the methanol extract of Dicranopteris linearis (AQDL) leaves against paracetamol (PCM)-induced liver intoxication in rats. The test solutions, AQDL (50, 250, and 500 mg/kg), were administered orally to rats (n = 6) once daily for seven consecutive days followed by the hepatotoxicity induction using 3 g/kg PCM (p.o.). Blood was collected for serum biochemical parameters analysis while the liver was collected for histopathological examination and endogenous antioxidant enzymes analysis. AQDL was also subjected to antioxidant determination and phytochemical analysis. Results obtained show that AQDL possessed high total phenolic content (TPC) value and remarkable radical scavenging activities. AQDL also significantly (p < 0.05) reduced the liver weight/body weight (LW/BW) ratio or serum level of ALT, AST, and total bilirubin while significantly (p < 0.05) increase the level of superoxide dismutase (SOD) and catalase (CAT) without affecting the malondialdehyde (MDA) in the liver indicating its hepatoprotective effect. Phytoconstituents analyses showed only the presence of saponins and triterpenes, but lack of flavonoids. In conclusion, AQDL exerts hepatoprotective activity via its high antioxidant potential and ability to modulate the endogenous enzymatic antioxidant defense system possibly via the synergistic action of saponins and triterpenes.
    MeSH terms: Acetaminophen/toxicity*; Animals; Antioxidants/pharmacology*; Antioxidants/chemistry; Liver/drug effects; Liver/metabolism; Male; Plant Extracts/pharmacology*; Plant Extracts/chemistry; Rats, Sprague-Dawley; Plant Leaves/chemistry; Rats; Drug-Induced Liver Injury/metabolism*; Tracheobionta*
  11. Abdullah MF, Nuge T, Andriyana A, Ang BC, Muhamad F
    Polymers (Basel), 2019 Dec 04;11(12).
    PMID: 31817133 DOI: 10.3390/polym11122008
    The key attributes of core-shell fibers are their ability to preserve bioactivity of incorporated-sensitive biomolecules (such as drug, protein, and growth factor) and subsequently control biomolecule release to the targeted microenvironments to achieve therapeutic effects. Such qualities are highly favorable for tissue engineering and drug delivery, and these features are not able to be offered by monolithic fibers. In this review, we begin with an overview on design requirement of core-shell fibers, followed by the summary of recent preparation methods of core-shell fibers, with focus on electrospinning-based techniques and other newly discovered fabrication approaches. We then highlight the importance and roles of core-shell fibers in tissue engineering and drug delivery, accompanied by thorough discussion on controllable release strategies of the incorporated bioactive molecules from the fibers. Ultimately, we touch on core-shell fibers-related challenges and offer perspectives on their future direction towards clinical applications.
  12. Ahmad A, Jamil SNAM, Shean Yaw Choong T, Abdullah AH, Mastuli MS, Othman N, et al.
    Polymers (Basel), 2019 Dec 04;11(12).
    PMID: 31817283 DOI: 10.3390/polym11122011
    This paper describes the preparation, characterisation, and potential application of flexible palm oil-based polyurethane foam (PUF) as a support for iron-silica (Fe-Si) adsorbent. Fe-Si/polyurethane composite (Fe-Si/PUC) was prepared by impregnating Fe-Si adsorbent onto the surface of PUF by using a novel immersion-drying method. Morphological analysis of Fe-Si/PUC proved that Fe-Si was successfully impregnated onto the surface of PUF. Compression test and thermogravimetric analysis were carried out to determine the flexibility and thermal stability of Fe-Si/PUC, respectively. The Fe-Si/PUC removed 90.0% of 10 ppm methylene blue (MB) from aqueous solution in 60 min. The reusability study showed that Fe-Si/PUC removed 55.9% of MB on the seventh cycle. Hence, the synthesis of Fe-Si/PUC opens up a new path of implementing palm oil-based PUF to assist in the recovery of an adsorbent for environmental clean-up. The mechanism of physical interaction during the impregnation of Fe-Si adsorbent onto PUF was proposed in this paper.
    MeSH terms: Drug Compounding; Iron; Methylene Blue; Polyurethanes; Silicon Dioxide; Water; Iron, Dietary
  13. Sand Chee S, Jawaid M
    Polymers (Basel), 2019 Dec 04;11(12).
    PMID: 31817284 DOI: 10.3390/polym11122012
    In this work, the optimum filler loading to prepare epoxy/organoclay nanocomposites by the in-situ polymerization method was studied. Bi-functionalized montmorillonite at different filler loading (0.5, 1.0, 2.0, 4.0 wt %) was dispersed in epoxy resin by using a high shear speed homogenizer. The effect on morphology, thermal, dynamic mechanical, and tensile properties of the epoxy/organoclay nanocomposites were studied in this work. Wide-angle X-ray scattering (WAXS) and field emission scanning electron microscope (FESEM) studies revealed that possible intercalated structures were obtained in epoxy/organoclay nanocomposites. Thermogravimetric analysis (TGA) shows that epoxy/organoclay nanocomposites exhibit higher thermal stability at the maximum and final decomposition temperature, as well as higher char content, compared to pristine epoxy. The dynamic mechanical analysis (DMA) indicate that storage modulus (E'), loss modulus (E″), cross-link density and glass transition temperature (Tg) of the nanocomposites were improved with organoclay loading up to 1 wt %. Beyond this loading limit, the deterioration of properties was observed. A similar trend was also observed on tensile strength and modulus. We concluded from this study that organoclay loading up to 1 wt % is suitable for further study to fabricate hybrid nanocomposites for various applications.
    MeSH terms: Bentonite; Epoxy Resins; Glass; Microscopy, Electron, Scanning; Radiography; Temperature; Tensile Strength; X-Rays; Transition Temperature; Microscopy, Electron, Transmission; Nanocomposites; Polymerization
  14. Ahmad Saffian H, Hyun-Joong K, Md Tahir P, Ibrahim NA, Lee SH, Lee CH
    Materials (Basel), 2019 Dec 05;12(24).
    PMID: 31817323 DOI: 10.3390/ma12244043
    In this study, the effects of lignin modification on the properties of kenaf core fiber reinforced poly(butylene succinate) biocomposites were examined. A weight percent gain (WPG) value of 30.21% was recorded after the lignin were modified with maleic anhydride. Lower mechanical properties were observed for lignin composites because of incompatible bonding between the hydrophobic matrix and the hydrophilic lignin. Modified lignin (ML) was found to have a better interfacial bonding, since maleic anhydrides remove most of the hydrophilic hydrogen bonding (this was proven by a Fourier-transform infrared (FTIR) spectrometer-a reduction of broadband near 3400 cm-1, corresponding to the -OH stretching vibration of hydroxyl groups for the ML samples). On the other hand, ML was found to have a slightly lower glass transition temperature, Tg, since reactions with maleic anhydride destroy most of the intra- and inter-molecular hydrogen bonds, resulting in a softer structure at elevated temperatures. The addition of kraft lignin was found to increase the thermal stability of the PBS polymer composites, while modified kraft lignin showed higher thermal stability than pure kraft lignin and possessed delayed onset thermal degradation temperature.
    MeSH terms: Butylene Glycols; Cold Temperature; Dietary Fiber; Hydrogen Bonding; Lignin; Maleic Anhydrides; Polymers; Temperature; Vibration; Spectroscopy, Fourier Transform Infrared; Hibiscus; Transition Temperature
  15. Hamdan A, Haji Idrus R, Mokhtar MH
    PMID: 31817324 DOI: 10.3390/ijerph16244911
    Diabetes mellitus is one of the most prevalent metabolic disorders that affect people of all genders, ages, and races. Medicinal herbs have gained wide attention from researchers and have been considered to be a beneficial adjuvant agent to oral antidiabetic drugs because of their integrated effects. Concerning the various beneficial effects of Nigella sativa, this systematic review aims to provide comprehensive information on the effects of Nigella sativa on glucose and insulin profile status in humans. A computerized database search performed through Scopus and Medline via Ebscohost with the following set of keywords: Nigella Sativa OR black seed oil OR thymoquinone OR black cumin AND diabetes mellitus OR hyperglycemia OR blood glucose OR hemoglobin A1C had returned 875 relevant articles. A total of seven articles were retrieved for further assessment and underwent data extraction to be included in this review. Nigella sativa was shown to significantly improve laboratory parameters of hyperglycemia and diabetes control after treatment with a significant fall in fasting blood glucose, blood glucose level 2 h postprandial, glycated hemoglobin, and insulin resistance, and a rise in serum insulin. In conclusion, these findings suggested that Nigella sativa could be used as an adjuvant for oral antidiabetic drugs in diabetes control.
    MeSH terms: Blood Glucose/drug effects; Diabetes Mellitus, Type 2/blood; Diabetes Mellitus, Type 2/drug therapy*; Hemoglobin A, Glycosylated/drug effects; Humans; Hypoglycemic Agents/administration & dosage; Hypoglycemic Agents/adverse effects; Hypoglycemic Agents/therapeutic use*; Insulin Resistance/physiology; Male; Plant Extracts/administration & dosage; Plant Extracts/adverse effects; Plant Extracts/therapeutic use*; Plants, Medicinal; Nigella sativa*
  16. Ab Ghaffar SF, Mohd Sidik S, Ibrahim N, Awang H, Gyanchand Rampal LR
    PMID: 31817328 DOI: 10.3390/ijerph16244913
    Anxiety is one of the most common mental health disorders in childhood, and children with anxiety have an increased risk of psychiatric disorders during adulthood. This study aimed to evaluate the effectiveness of a school-based anxiety prevention program for reducing anxiety among primary school students relative to a school-as-usual control group. Secondary to this, the current study aimed to examine the effect of a school-based prevention program on worry coping skills and self-esteem. A two-group parallel cluster randomized controlled trial of a single-blinded study was conducted to evaluate the effectiveness of the program, with schools as the unit of allocation and individual participants as the unit of analysis. The intervention program was conducted between May 2016 and December 2017. The primary outcome was anxiety, whereas the secondary outcomes were worry coping skills and self-esteem measured at three months post-intervention. Data were analyzed by using a generalized linear mixed model, accounting for the clustering effect. Subgroup analyses were performed for children with anxiety. A total of 461 students participated in this study. At baseline, there was no significant difference between groups for anxiety score, worry coping skills score, and self-esteem score (p > 0.05). The intervention was effective in reducing anxiety for the whole sample (p = 0.001) and the anxiety subgroup (p = 0.001). However, it was not effective in improving worry coping skills and self-esteem. These findings suggest that the program could be effective for reducing symptoms of anxiety when delivered in schools and provide some support for delivering this type of program in primary school settings.
    MeSH terms: Adaptation, Psychological; Anxiety/prevention & control*; Child; Female; Humans; Male; School Health Services/organization & administration*; Self Concept; Single-Blind Method
  17. Sadrolhosseini AR, Habibiasr M, Shafie S, Solaimani H, Lim HN
    Int J Mol Sci, 2019 Dec 06;20(24).
    PMID: 31817593 DOI: 10.3390/ijms20246153
    Platinum nanoparticles were synthesized in graphene oxide aqueous solution using a laser ablation technique to investigate the effect of optical linear, nonlinear and thermal properties of platinum-graphene oxide nanocomposite solution. The samples were prepared with different ablation times. The platinum nanoparticles that formed a spherical shape on the surface of graphene oxide solution were authenticated using UV-visible spectrum and transmission electron microscopy patterns. The particle size decreased with increasing ablation time, and the concentration and volume fraction of samples were increased. To obtain the optical linear, nonlinear and thermal properties of platinum-graphene oxide nanocomposite solution, UV-visible spectroscopy, Z-scan, thermal lens and photoacoustic techniques were used. Consequently, the linear and nonlinear refractive indices increased with an increase in the volume fraction of platinum nanoparticles. It was observed from the spatial self-phase modulation patterns that, the optical nonlinear property of the graphene oxide was enhanced in the presence of platinum nanoparticles, and the nonlinearity increased with an increase in the volume fraction of platinum nanoparticles inside the graphene oxide solution. The thermal diffusivity and thermal effusivity of platinum nanoparticles graphene oxide were measured using a thermal lens and photoacoustic methods, respectively. The thermal diffusivity and thermal effusivity of samples were in the range of 0.0341 × 10-5 m2/s to 0.1223 × 10-5 m2/s and 0.163 W s1/2 cm-2 K-1 to 0.3192 W s1/2 cm-2 K-1, respectively. Consequently, the platinum enhanced the optical and thermal properties of graphene oxide.
    MeSH terms: Graphite/chemistry*; Platinum/chemistry*; Laser Therapy; Metal Nanoparticles/chemistry*; Photoacoustic Techniques
  18. Abdul Rahim R, Jayusman PA, Muhammad N, Ahmad F, Mokhtar N, Naina Mohamed I, et al.
    Int J Environ Res Public Health, 2019 Dec 06;16(24).
    PMID: 31817699 DOI: 10.3390/ijerph16244962
    Plant-derived polyphenolic compounds have gained widespread recognition as remarkable nutraceuticals for the prevention and treatment of various disorders, such as cardiovascular, neurodegenerative, diabetes, osteoporosis, and neoplastic diseases. Evidence from the epidemiological studies has suggested the association between long-term consumption of diets rich in polyphenols and protection against chronic diseases. Nevertheless, the applications of these phytochemicals are limited due to its low solubility, low bioavailability, instability, and degradability by in vivo and in vitro conditions. Therefore, in recent years, newer approaches have been attempted to solve the restrictions related to their delivery system. Nanoencapsulation of phenolic compounds with biopolymeric nanoparticles could be a promising strategy for protection and effective delivery of phenolics. Poly(lactic-co-glycolic acid) (PLGA) is one of the most successfully developed biodegradable polymers that has attracted considerable attention due to its attractive properties. In this review, our main goal is to cover the relevant recent studies that explore the pharmaceutical significance and therapeutic superiority of the advance delivery systems of phenolic compounds using PLGA-based nanoparticles. A summary of the recent studies implementing encapsulation techniques applied to polyphenolic compounds from plants confirmed that nanoencapsulation with PLGA nanoparticles is a promising approach to potentialize their therapeutic activity.
    MeSH terms: Chronic Disease; Humans; Phenols/pharmacology*; Phenols/chemistry*; Polyglycolic Acid/chemistry*; Drug Delivery Systems/methods; Lactic Acid/chemistry; Nanoparticles/chemistry
  19. Wan Mohd Tajuddin WNB, Lajis NH, Abas F, Othman I, Naidu R
    Nutrients, 2019 Dec 06;11(12).
    PMID: 31817718 DOI: 10.3390/nu11122989
    Lung cancer is among the most common cancers with a high mortality rate worldwide. Despite the significant advances in diagnostic and therapeutic approaches, lung cancer prognoses and survival rates remain poor due to late diagnosis, drug resistance, and adverse effects. Therefore, new intervention therapies, such as the use of natural compounds with decreased toxicities, have been considered in lung cancer therapy. Curcumin, a natural occurring polyphenol derived from turmeric (Curcuma longa) has been studied extensively in recent years for its therapeutic effects. It has been shown that curcumin demonstrates anti-cancer effects in lung cancer through various mechanisms, including inhibition of cell proliferation, invasion, and metastasis, induction of apoptosis, epigenetic alterations, and regulation of microRNA expression. Several invitro and invivo studies have shown that these mechanisms are modulated by multiple molecular targets such as STAT3, EGFR, FOXO3a, TGF-β, eIF2α, COX-2, Bcl-2, PI3KAkt/mTOR, ROS, Fas/FasL, Cdc42, E-cadherin, MMPs, and adiponectin. In addition, limitations, strategies to overcome curcumin bioavailability, and potential side effects as well as clinical trials were also reviewed.
    MeSH terms: Antineoplastic Agents, Phytogenic/adverse effects; Antineoplastic Agents, Phytogenic/pharmacokinetics; Antineoplastic Agents, Phytogenic/pharmacology*; Antineoplastic Agents, Phytogenic/therapeutic use; Biological Availability; Clinical Trials as Topic; Curcumin/adverse effects; Curcumin/pharmacokinetics; Curcumin/pharmacology*; Curcumin/therapeutic use; Humans; Lung Neoplasms/drug therapy*; Neoplasm Invasiveness; Neoplasm Metastasis; Signal Transduction/drug effects; Apoptosis/drug effects; Cell Proliferation/drug effects
  20. Ramli NZ, Chin KY, Zarkasi KA, Ahmad F
    PMID: 31817937 DOI: 10.3390/ijerph16244987
    Metabolic syndrome (MetS) is a group of conditions including central obesity, hyperglycemia, dyslipidemia, and hypertension that increases the risk for cardiometabolic diseases. Kelulut honey (KH) produced by stingless honey bees has stronger antioxidant properties compared to other honey types and may be a functional food against MetS. This study aimed to determine the efficacy of KH in preventing metabolic changes in rats with MetS induced by high-carbohydrate and high-fat (HCHF) diet. Male Wistar rats were randomly assigned to the control (C), HCHF diet-induced MetS (S), and MetS supplemented with KH (K) groups. The K group was given KH (1 g/kg/day) for eight weeks. Compared to the control, the S group had significant higher omental fat mass, serum triglyceride, systolic blood pressure, diastolic blood pressures, adipocyte area, and adipocyte perimeter (p < 0.05). KH supplementation significantly prevented these MetS-induced changes at week 16 (p < 0.05). Several compounds, including 4-hydroxyphenyl acetic acid, coumaric and caffeic acids, had been detected via liquid chromatography-mass spectrometry analysis that might contribute to the reversal of these changes. The beneficial effects of KH against MetS-induced rats provide the basis for future KH research to investigate its potential use in humans and its molecular mechanisms in alleviating the disease.
    MeSH terms: Adipose Tissue/drug effects; Animals; Antioxidants/pharmacology*; Bees; Blood Pressure; Dietary Carbohydrates; Disease Models, Animal; Honey*; Lipids/blood; Male; Random Allocation; Rats, Wistar; Metabolic Syndrome X/drug therapy*; Metabolic Syndrome X/physiopathology; Rats; Diet, High-Fat
External Links