RESULTS: Both methods differed considerably in the mass recoveries of the individual cell wall components, which changed on how we assess their degradation characteristics. For example, Method B gave a higher degradation of lignin (61.9%), as compared to Method A (33.2%). Method A, however, showed a better correlation of IVGP with the ratio of lignin to total structural carbohydrates, as compared to Method B (Pearson's r of -0.84 versus -0.69). Nevertheless, Method B provides a more accurate quantification of lignin, reflecting its actual modification and degradation. With the information on the lignin structural features, Method B presents a substantial advantage in understanding the underlying mechanisms of lignin breakdown. Both methods, however, could not accurately quantify the cellulose contents - among others, due to interference of fungal biomass.
CONCLUSION: Method A only accounts for the recalcitrant residue and therefore is more suitable for evaluating ruminal digestibility. Method B allows a more accurate quantification of cell wall, required to understand and better explains the actual modification of the cell wall. The suitability of both methods, therefore, depends on their intended purposes. © 2019 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Methods: Niosomes were prepared from a mixture of sorbitan monostearate 60, cholesterol, and synthesized D-α-tocopherol polyethylene glycol 1000 succinate-diethylenetriaminepentaacetic acid (synthesis confirmed by 1H and 13C nuclear magnetic resonance spectroscopy). Niosomes were radiolabeled by surface chelation with reduced 99mTc. Parameters affecting the radiolabeling efficiency such as concentration of stannous chloride (SnCl2·H2O), pH, and incubation time were evaluated. In vitro stability of radiolabeled niosomes was studied in 0.9% saline and human serum at 37°C for up to 8 hours.
Results: Niosomes had an average particle size of 110.2±0.7 nm, polydispersity index of 0.229±0.008, and zeta potential of -64.8±1.2 mV. Experimental data revealed that 30 µg/mL of SnCl2·H2O was the optimal concentration of reducing agent required for the radiolabeling process. The pH and incubation time required to obtain high radiolabeling efficiency was pH 5 and 15 minutes, respectively. 99mTc-labeled niosomes exhibited high radiolabeling efficiency (>90%) and showed good in vitro stability for up to 8 hours.
Conclusion: To our knowledge, this is the first study published on the surface chelation of niosomes with 99mTc. The formulated 99mTc-labeled niosomes possessed high radiolabeling efficacy, good stability in vitro, and show good promise for potential use in nuclear imaging in the future.
METHODS: A double-blind, randomized, placebo-controlled trial involved one hundred and eight subjects (BMI between 25 and 35 kg/m2) that were randomly assigned to either the low-dose or the high-dose IQP-AE-103 group, or the placebo group. Following a 2-week run-in period, subjects received two capsules of investigational product after three daily main meals for 12 weeks. Subjects were instructed to maintain a nutritionally balanced hypocaloric diet according to the individual's energy requirement. Body weight, body fat, and waist and hip circumference were measured at baseline, and after 2, 4, 8, and 12 weeks. Subjects also rated their feelings of hunger and fullness using visual analogue scales, and food craving on a 5-point scale at the same time intervals. Blood samplings for safety laboratory parameters were taken before and at the end of the study.
RESULTS: After 12 weeks of intake, the high-dose IQP-AE-103 group had a significantly greater weight loss compared with the placebo (5.03 ± 2.50 kg vs. 0.98 ± 2.06 kg, respectively; p < 0.001) and the low-dose group (3.01 ± 2.19 kg; p=0.001). The high-dose group experienced a decrease in body fat of 3.15 ± 2.41 kg compared with a decrease of 0.23 ± 2.74 kg for the placebo group (p < 0.001). High-dose IQP-AE-103 also decreased the feeling of hunger in 66% subjects. A beneficial effect of IQP-AE-103 on the lipid metabolism was also demonstrated in the subgroup of subjects with baseline total cholesterol levels above 6.2 mmol/L. No side effects related to the intake of IQP-AE-103 were reported.
CONCLUSIONS: These findings indicate that IQP-AE-103 could be an effective and safe weight loss intervention. This trial is registered with NCT03058367.