Browse publications by year: 2021

  1. Khan S, Ali Khan M, Zafar A, Javed MF, Aslam F, Musarat MA, et al.
    Materials (Basel), 2021 Dec 22;15(1).
    PMID: 35009186 DOI: 10.3390/ma15010039
    The object of this research is concrete-filled steel tubes (CFST). The article aimed to develop a prediction Multiphysics model for the circular CFST column by using the Artificial Neural Network (ANN), the Adaptive Neuro-Fuzzy Inference System (ANFIS) and the Gene Expression Program (GEP). The database for this study contains 1667 datapoints in which 702 are short CFST columns and 965 are long CFST columns. The input parameters are the geometric dimensions of the structural elements of the column and the mechanical properties of materials. The target parameters are the bearing capacity of columns, which determines their life cycle. A Multiphysics model was developed, and various statistical checks were applied using the three artificial intelligence techniques mentioned above. Parametric and sensitivity analyses were also performed on both short and long GEP models. The overall performance of the GEP model was better than the ANN and ANFIS models, and the prediction values of the GEP model were near actual values. The PI of the predicted Nst by GEP, ANN and ANFIS for training are 0.0416, 0.1423, and 0.1016, respectively, and for Nlg these values are 0.1169, 0.2990 and 0.1542, respectively. Corresponding OF values are 0.2300, 0.1200, and 0.090 for Nst, and 0.1000, 0.2700, and 0.1500 for Nlg. The superiority of the GEP method to the other techniques can be seen from the fact that the GEP technique provides suitable connections based on practical experimental work and does not rely on prior solutions. It is concluded that the GEP model can be used to predict the bearing capacity of circular CFST columns to avoid any laborious and time-consuming experimental work. It is also recommended that further research should be performed on the data to develop a prediction equation using other techniques such as Random Forest Regression and Multi Expression Program.
  2. Ahmed S, Mahaini Z, Abed F, Mannan MA, Al-Samarai M
    Materials (Basel), 2021 Dec 22;15(1).
    PMID: 35009188 DOI: 10.3390/ma15010041
    The use of different sustainable materials in the manufacture of ultra-high-performance concrete (UHPC) is becoming increasingly common due to the unabating concerns over climate change and sustainability in the construction sector. Reactive powder concrete (RPC) is an UHPC in which traditional coarse aggregates are replaced by fine aggregates. The main purpose of this research is to produce RPC using dune sand and to study its microstructure and mechanical properties under different curing conditions of water curing and hot air curing. The effects of these factors are studied over a long-term period of 90 days. Quartz sand is completely replaced by a blend of crushed and dune sand, and cement is partially replaced by using binary blends of ground granulated blast furnace slag (GGBS) and fly ash (FA), which are used alongside silica fume (SF) to make a ternary supplementary binder system. Microstructural analysis is conducted using scanning electron microscopy (SEM), and engineering properties like compressive strength and flexural strength are studied to evaluate the performance of dune sand RPC. Overall, the results affirm that the production of UHPC is possible with the use of dune sand. The compressive strength of all mixes exceeded 120 MPa after 12 h only of hot air curing (HAC). The SEM results revealed the dense microstructure of RPC. However, goethite-like structures (corrosion products) were spotted at 90 days for all HAC specimens. Additionally, the use of FA accelerated the formation of such products as compared to GGBS. The effect of these products was insignificant from a mechanical point of view. However, additional research is required to determine their effect on the durability of RPC.
  3. Baghdadi AH, Sajuri Z, Keshtgar A, Mohd Sharif N, Rajabi A
    Materials (Basel), 2021 Dec 31;15(1).
    PMID: 35009434 DOI: 10.3390/ma15010288
    The 5083 and 6061(T6) aluminum (Al) alloys are widely used in transportation industries and the development of structural designs because of their high toughness and high corrosion resistance. Friction stir welding (FSW) was performed to produce the dissimilar welded joint of Al5083-Al 6061(T6) under different welding parameters. However, softening behavior occurred in the friction stir welded (FSWed) samples because of grain coarsening or the dissolution of precipitation-hardening phases in the welding zone. Consequently, this research intended to investigate the effect of the post-weld heat treatment (PWHT) method on the mechanical property improvement of the dissimilar FSWed Al5083-Al6061(T6) and governing abnormal grain growth (AGG) through different welding parameters. The results showed PWHT enhanced the mechanical properties of dissimilar joints of Al5083-Al6061(T6). AGG was obtained in the microstructure of PWHTed joints, but appropriate PWHT could recover the dissolved precipitation-hardening particle in the heat-affected zone of the as-welded joint. Further, the tensile strength of the dissimilar joint increased from 181 MPa in the as-welded joint to 270 MPa in the PWHTed joint, showing 93% welding efficacy.
  4. Muthu BR, Pushpa EP, Dhandapani V, Jayaraman K, Vasanthakumar H, Oh WC, et al.
    Sensors (Basel), 2021 Dec 22;22(1).
    PMID: 35009576 DOI: 10.3390/s22010033
    Aerospace equipages encounter potential radiation footprints through which soft errors occur in the memories onboard. Hence, robustness against radiation with reliability in memory cells is a crucial factor in aerospace electronic systems. This work proposes a novel Carbon nanotube field-effect transistor (CNTFET) in designing a robust memory cell to overcome these soft errors. Further, a petite driver circuit to test the SRAM cells which serve the purpose of precharge and sense amplifier, and has a reduction in threefold of transistor count is recommended. Additionally, analysis of robustness against radiation in varying memory cells is carried out using standard GPDK 90 nm, GPDK 45 nm, and 14 nm CNTFET. The reliability of memory cells depends on the critical charge of a device, and it is tested by striking an equivalent current charge of the cosmic ray's linear energy transfer (LET) level. Also, the robustness of the memory cell is tested against the variation in process, voltage and temperature. Though CNTFET surges with high power consumption, it exhibits better noise margin and depleted access time. GPDK 45 nm has an average of 40% increase in SNM and 93% reduction of power compared to the 14 nm CNTFET with 96% of surge in write access time. Thus, the conventional MOSFET's 45 nm node outperforms all the configurations in terms of static noise margin, power, and read delay which swaps with increased write access time.
    MeSH terms: Transistors, Electronic; Reproducibility of Results; Nanotubes, Carbon*
  5. Nazri NAA, Azeman NH, Bakar MHA, Mobarak NN, Luo Y, Arsad N, et al.
    Nanomaterials (Basel), 2021 Dec 23;12(1).
    PMID: 35009983 DOI: 10.3390/nano12010035
    This paper demonstrates carbon quantum dots (CQDs) with triangular silver nanoparticles (AgNPs) as the sensing materials of localized surface plasmon resonance (LSPR) sensors for chlorophyll detection. The CQDs and AgNPs were prepared by a one-step hydrothermal process and a direct chemical reduction process, respectively. FTIR analysis shows that a CQD consists of NH2, OH, and COOH functional groups. The appearance of C=O and NH2 at 399.5 eV and 529.6 eV in XPS analysis indicates that functional groups are available for adsorption sites for chlorophyll interaction. A AgNP-CQD composite was coated on the glass slide surface using (3-aminopropyl) triethoxysilane (APTES) as a coupling agent and acted as the active sensing layer for chlorophyll detection. In LSPR sensing, the linear response detection for AgNP-CQD demonstrates R2 = 0.9581 and a sensitivity of 0.80 nm ppm-1, with a detection limit of 4.71 ppm ranging from 0.2 to 10.0 ppm. Meanwhile, a AgNP shows a linear response of R2 = 0.1541 and a sensitivity of 0.25 nm ppm-1, with the detection limit of 52.76 ppm upon exposure to chlorophyll. Based on these results, the AgNP-CQD composite shows a better linearity response and a higher sensitivity than bare AgNPs when exposed to chlorophyll, highlighting the potential of AgNP-CQD as a sensing material in this study.
  6. Vinnik DA, Zhivulin VE, Trofimov EA, Gudkova SA, Punda AY, Valiulina AN, et al.
    Nanomaterials (Basel), 2021 Dec 23;12(1).
    PMID: 35009987 DOI: 10.3390/nano12010036
    Three high-entropy Sm(Eu,Gd)Cr0.2Mn0.2Fe0.2Co0.2Ni0.2O3 perovskite solid solutions were synthesized using the usual ceramic technology. The XRD investigation at room temperature established a single-phase perovskite product. The Rietveld refinement with the FullProf computer program in the frame of the orthorhombic Pnma (No 62) space group was realized. Along with a decrease in the V unit cell volume from ~224.33 Å3 for the Sm-based sample down to ~221.52 Å3 for the Gd-based sample, an opposite tendency was observed for the unit cell parameters as the ordinal number of the rare-earth cation increased. The average grain size was in the range of 5-8 μm. Field magnetization was measured up to 30 kOe at 50 K and 300 K. The law of approach to saturation was used to determine the Ms spontaneous magnetization that nonlinearly increased from ~1.89 emu/g (Sm) up to ~17.49 emu/g (Gd) and from ~0.59 emu/g (Sm) up to ~3.16 emu/g (Gd) at 50 K and 300 K, respectively. The Mr residual magnetization and Hc coercive force were also determined, while the SQR loop squareness, k magnetic crystallographic anisotropy coefficient, and Ha anisotropy field were calculated. Temperature magnetization was measured in a field of 30 kOe. ZFC and FC magnetization curves were fixed in a field of 100 Oe. It was discovered that the Tmo magnetic ordering temperature downward-curve decreased from ~137.98 K (Sm) down to ~133.99 K (Gd). The spin glass state with ferromagnetic nanoinclusions for all the samples was observed. The average and Dmax maximum diameter of ferromagnetic nanoinclusions were calculated and they were in the range of 40-50 nm and 160-180 nm, respectively. The mechanism of magnetic state formation is discussed in terms of the effects of the A-site cation size and B-site poly-substitution on the indirect superexchange interactions.
  7. Saisahas K, Soleh A, Somsiri S, Senglan P, Promsuwan K, Saichanapan J, et al.
    Nanomaterials (Basel), 2021 Dec 28;12(1).
    PMID: 35010025 DOI: 10.3390/nano12010073
    A 3D porous graphene structure was directly induced by CO2 laser from the surface of Kapton tape (carbon source) supported by polyethylene terephthalate (PET) laminating film. A highly flexible laser-induced porous graphene (LI-PGr) electrode was then fabricated via a facile one-step method without reagent and solvent in a procedure that required no stencil mask. The method makes pattern design easy, and production cost-effective and scalable. We investigated the performance of the LI-PGr electrode for the detection of methamphetamine (MA) on household surfaces and in biological fluids. The material properties and morphology of LI-PGr were analysed by scanning electron microscopy (SEM), energy dispersive x-ray (EDX) and Raman spectroscopy. The LI-PGr electrode was used as the detector in a portable electrochemical sensor, which exhibited a linear range from 1.00 to 30.0 µg mL-1 and a detection limit of 0.31 µg mL-1. Reproducibility was good (relative standard deviation of 2.50% at 10.0 µg mL-1; n = 10) and anti-interference was excellent. The sensor showed good precision and successfully determined MA on household surfaces and in saliva samples.
  8. Dai K, Wei Y, Jiang S, Xu F, Wang H, Zhang X, et al.
    Foods, 2021 Dec 31;11(1).
    PMID: 35010225 DOI: 10.3390/foods11010099
    Thinned peach polyphenols (TPPs) were extracted by ultrasonic disruption and purified using macroporous resin. Optimized extraction conditions resulted in a TPPs yield of 1.59 ± 0.02 mg GAE/g FW, and optimized purification conditions resulted in a purity of 43.86% with NKA-9 resin. TPPs composition was analyzed by UPLC-ESI-QTOF-MS/MS; chlorogenic acid, catechin, and neochlorogenic acid were the most abundant compounds in thinned peaches. Purified TPPs exhibited scavenging activity on DPPH, ABTS, hydroxyl radical, and FRAP. TPPs inhibited α-amylase and α-glucosidase by competitive and noncompetitive reversible inhibition, respectively. TPPs also exhibited a higher binding capacity for bile acids than cholestyramine. In summary, TPPs from thinned peaches are potentially valuable because of their high antioxidant, hypoglycemic, and hypolipidemic capacities, and present a new incentive for the comprehensive utilization of thinned peach fruit.
  9. Cong CW, Tan CS, Noew HS, Wu SL
    PMID: 35010416 DOI: 10.3390/ijerph19010156
    The Family Adaptability and Cohesion Scale III (FACES-III) has been widely used to measure an individual's family functioning in terms of cohesion and adaptability. In Malaysia, the FACES-III has been translated into the Malay language for the community, but its psychometric properties in this context remain unknown. Thus, the purpose of this research is to examine the psychometric properties of the Malay version of the FACES-III in 852 adolescents attending secondary schools in Kuala Lumpur, Malaysia. Data were randomly split into two halves: the exploration sample and the validation sample. Exploratory factor analysis was conducted on the exploration sample and a two-factor model was discovered after removing nine items that showed low factor loading. Then, confirmatory factor analysis was conducted on the validation sample to compare the one-factor models, two-factor models, and three-factor models. Results showed that the 11-item two-factor model (FACES-III-M-SF) was superior to the other competing models. Both the exploratory and confirmatory factor analyses replicated the two-factor structure of the original version of FACES-III. The reliability of the overall scale was consistently good, but the subscale results were mixed. This suggests that researchers should use the overall score, but not the subscale scores, in analyses.
  10. Fadzil F, Idris IB, Kamal Nor N, Ismail J, Mohd Tamil A, Mohamad Noh K, et al.
    PMID: 35010584 DOI: 10.3390/ijerph19010325
    Attending appointments is vital for children with special needs, as such appointments involve long-term interdisciplinary care to ensure continuity of care and improve health and well-being. This study was performed to determine the prevalence of missed clinic appointments and identify the factors among those who have ever missed appointments and barriers of access to children's special needs services at the Child Development Centre (CDC) at the Universiti Kebangsaan Malaysia Medical Centre (UKMMC). Moreover, suggestions for improvement from the caregivers' perspectives were explored. This is an explanatory sequential mixed methods study among caregivers of children with developmental disabilities aged up to 17 years old. Of 197 caregivers, 62 (31.5%) had missed clinic appointments. Forgetfulness was the most frequently cited reason. The bi-variable analysis showed significant differences in missed appointment rates by gender of caregivers and duration of follow-up. The final logistic regression model demonstrated that, when combined with the effect of being a male caregiver as an independent variable, follow-up duration of more than 6 years increased 2.67 times the risk of missing an appointment. Caregivers' perceived barriers were transportation, caregiver, child and healthcare services factors. Policies and strategic plans should be focused on key findings from these factors to improve appointment adherence and accessibility to services for children with special needs.
  11. Sivanandy P, Leey TC, Xiang TC, Ling TC, Wey Han SA, Semilan SLA, et al.
    PMID: 35010624 DOI: 10.3390/ijerph19010364
    Parkinson's Disease (PD) is a disease that involves neurodegeneration and is characterised by the motor symptoms which include muscle rigidity, tremor, and bradykinesia. Other non-motor symptoms include pain, depression, anxiety, and psychosis. This disease affects up to ten million people worldwide. The pathophysiology behind PD is due to the neurodegeneration of the nigrostriatal pathway. There are many conventional drugs used in the treatment of PD. However, there are limitations associated with conventional drugs. For instance, levodopa is associated with the on-off phenomenon, and it may induce wearing off as time progresses. Therefore, this review aimed to analyze the newly approved drugs by the United States-Food and Drug Administration (US-FDA) from 2016-2019 as the adjuvant therapy for the treatment of PD symptoms in terms of efficacy and safety. The new drugs include safinamide, istradefylline and pimavanserin. From this review, safinamide is considered to be more efficacious and safer as the adjunct therapy to levodopa as compared to istradefylline in controlling the motor symptoms. In Study 016, both safinamide 50 mg (p = 0.0138) and 100 mg (p = 0.0006) have improved the Unified Parkinson's Disease Rating Scale (UPDRS) part III score as compared to placebo. Improvement in Clinical Global Impression-Change (CGI-C), Clinical Global Impression-Severity of Illness (CGI-S) and off time were also seen in both groups of patients following the morning levodopa dose. Pimavanserin also showed favorable effects in ameliorating the symptoms of Parkinson's Disease Psychosis (PDP). A combination of conventional therapy and non-pharmacological treatment is warranted to enhance the well-being of PD patients.
    MeSH terms: Antiparkinson Agents/therapeutic use; Pharmaceutical Preparations*; Humans; Levodopa/therapeutic use; United States
  12. Washif JA, Ammar A, Trabelsi K, Chamari K, Chong CSM, Mohd Kassim SFA, et al.
    PMID: 35010662 DOI: 10.3390/ijerph19010402
    The COVID-19 pandemic has affected the lifestyles and training of elite athletes around the world. The detrimental effects of lockdown periods may vary among individuals, as well as among sports and sexes. This study investigated the changes in dietary habits, and the predictors of perceived stress during lockdown and a "bubble" training camp. This cross-sectional, online survey involved 76 elite and world-class athletes from six able-bodied sports and nine parasports, all of whom were involved in a 30-day "bubble" training camp. Questions were asked on socio-demographics, training routines and wellbeing, perceived stress, and dietary habits, pertaining to "normal" training (prelockdown), lockdown training, and "bubble" camp training periods. Changes in perceived stress were trivial to small during lockdown compared to "normal" training, and trivial to moderate during a "bubble" camp, compared to lockdown. Para-athletes, males, older athletes, less experienced athletes, married individuals, and specific ethnicities appeared to be more detrimentally affected (increased perceived stress) by lockdown. These negative experiences, however, were largely reversed during "bubble" camps. During lockdown, more athletes reported increased evening snack consumption (+8%), later meal-times (+6%), decreased fluid intake (-6%), and no breakfast (+7%). These changes were reversed during "bubble" camps (12-18% improvements). Sport classification accounted for 16% of the increased perceived stress (p = 0.001) during lockdown. Overall, socio-demographic factors, improvements in training routines, well-being, and dietary habits explained 28% of the decreased perceived stress during a "bubble" camp. In conclusion, better dietary habits, training routines and well-being have implications for reduced perceived stress. During lockdown, "bubble" camps may be beneficial, but this observation may be a case-by-case consideration, and short split "bubble" periods are recommended.
    MeSH terms: Communicable Disease Control; Cross-Sectional Studies; Diet; Humans; Male; Regression Analysis; Stress, Psychological/epidemiology; Athletes; Pandemics
  13. Aziz HA, Rahmat NS, Alazaiza MYD
    PMID: 35010685 DOI: 10.3390/ijerph19010420
    Chemical-based coagulants and flocculants are commonly used in the coagulation-flocculation process. However, the drawbacks of using these chemical materials have triggered researchers to find natural materials to substitute or reduce the number of chemical-based coagulants and flocculants. This study examines the potential application of Nephelium lappaceum seeds as a natural coagulant-coagulant aid with Tin (IV) chloride (SnCl4) in eliminating suspended solids (SS), colour, and chemical oxygen demand (COD) from landfill leachate. Results showed that the efficiency of Nephelium lappaceum was low when used as the main coagulant in the standard jar test. When SnCl4 was applied as a single coagulant, as much as 98.4% of SS, 96.8% of colour and 82.0% of COD was eliminated at an optimal dose of 10.5 g/L and pH 7. The higher removal efficiency of colour (88.8%) was obtained when 8.40 g/L of SnCl4 was applied with a support of 3 g/L of Nephelium lappaceum. When SnCl4 was utilised as a coagulant, and Nephelium lappaceum seed was used as a flocculant, the removal of pollutants generally improved. Overall, this research showed that Nephelium lappaceum seed is a viable natural alternative for treating landfill leachate as a coagulant aid.
    MeSH terms: Chlorides; Flocculation; Sapindaceae*
  14. Naomi R, Embong H, Othman F, Ghazi HF, Maruthey N, Bahari H
    Nutrients, 2021 Dec 22;14(1).
    PMID: 35010895 DOI: 10.3390/nu14010020
    Alzheimer's disease (AD) is the most common form of neurodegenerative disorders affecting mostly the elderly. It is characterized by the presence of Aβ and neurofibrillary tangles (NFT), resulting in cognitive and memory impairment. Research shows that alteration in gut microbial diversity and defects in gut brain axis are linked to AD. Probiotics are known to be one of the best preventative measures against cognitive decline in AD. Numerous in vivo trials and recent clinical trials have proven the effectiveness of selected bacterial strains in slowing down the progression of AD. It is proven that probiotics modulate the inflammatory process, counteract with oxidative stress, and modify gut microbiota. Thus, this review summarizes the current evidence, diversity of bacterial strains, defects of gut brain axis in AD, harmful bacterial for AD, and the mechanism of action of probiotics in preventing AD. A literature search on selected databases such as PubMed, Semantic Scholar, Nature, and Springer link have identified potentially relevant articles to this topic. However, upon consideration of inclusion criteria and the limitation of publication year, only 22 articles have been selected to be further reviewed. The search query includes few sets of keywords as follows. (1) Probiotics OR gut microbiome OR microbes AND (2) Alzheimer OR cognitive OR aging OR dementia AND (3) clinical trial OR in vivo OR animal study. The results evidenced in this study help to clearly illustrate the relationship between probiotic supplementation and AD. Thus, this systematic review will help identify novel therapeutic strategies in the future as probiotics are free from triggering any adverse effects in human body.
    MeSH terms: Gastrointestinal Microbiome/drug effects*; Alzheimer Disease/diet therapy*; Humans; Probiotics/administration & dosage*; Probiotics/therapeutic use*
  15. Michael P, de Cruz CR, Mohd Nor N, Jamli S, Goh YM
    Animals (Basel), 2021 Dec 21;12(1).
    PMID: 35011107 DOI: 10.3390/ani12010001
    The demand and consumption of dairy products are expected to increase exponentially in developing countries, particularly in tropical regions. However, the intensification of dairy production to meet this increasing demand has its challenges. The challenges ranged from feed costs, resources, and their utilization, as well as the heat stress associated with rearing temperate-tropical crossbred cattle in the tropics. This article focused on key nutritional and environmental factors that should be considered when temperate-tropical crossbred cattle are used in the tropics. The article also describes measures to enhance the utilization of regional feed resources and efforts to overcome the impacts of heat stress. Heat stress is a major challenge in tropical dairy farming, as it leads to poor production, despite the genetic gains made through crossbreeding of high production temperate cattle with hardy tropical animals. The dependence on imported feed and animal-man competition for the same feed resources has escalated feed cost and food security concerns. The utilization of agricultural by-products and production of stable tropical crossbreds will be an asset to tropical countries in the future, more so when scarcity of feed resources and global warming becomes a closer reality. This initiative has far-reaching impacts in the tropics and increasingly warmer areas of traditional dairying regions in the future.
  16. Padzil F, Mariatulqabtiah AR, Tan WS, Ho KL, Isa NM, Lau HY, et al.
    Animals (Basel), 2021 Dec 30;12(1).
    PMID: 35011181 DOI: 10.3390/ani12010076
    Over the years, development of molecular diagnostics has evolved significantly in the detection of pathogens within humans and their surroundings. Researchers have discovered new species and strains of viruses, while mitigating the viral infections that occur, owing to the accessibility of nucleic acid screening methods such as polymerase chain reaction (PCR), quantitative (real-time) polymerase chain reaction (qPCR) and reverse-transcription qPCR (RT-qPCR). While such molecular detection methods are widely utilized as the benchmark, the invention of isothermal amplifications has also emerged as a reliable tool to improvise on-field diagnosis without dependence on thermocyclers. Among the established isothermal amplification technologies are loop-mediated isothermal amplification (LAMP), recombinant polymerase amplification (RPA), strand displacement activity (SDA), nucleic acid sequence-based amplification (NASBA), helicase-dependent amplification (HDA) and rolling circle amplification (RCA). This review highlights the past research on and future prospects of LAMP, its principles and applications as a promising point-of-care diagnostic method against avian viruses.
  17. Akinyede KA, Oyewusi HA, Hughes GD, Ekpo OE, Oguntibeju OO
    Molecules, 2021 Dec 28;27(1).
    PMID: 35011387 DOI: 10.3390/molecules27010155
    Diabetes mellitus (DM) is a chronic metabolic condition that can lead to significant complications and a high fatality rate worldwide. Efforts are ramping up to find and develop novel α-glucosidase and α-amylase inhibitors that are both effective and potentially safe. Traditional methodologies are being replaced with new techniques that are less complicated and less time demanding; yet, both the experimental and computational strategies are viable and complementary in drug discovery and development. As a result, this study was conducted to investigate the in vitro anti-diabetic potential of aqueous acetone Helichrysum petiolare and B.L Burtt extract (AAHPE) using a 2-NBDG, 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl) amino)-2-deoxy-d-glucose uptake assay. In addition, we performed molecular docking of the flavonoid constituents identified and quantified by liquid chromatography-mass spectrometry (LC-MS) from AAHPE with the potential to serve as effective and safe α-amylase and α-glucosidase inhibitors, which are important in drug discovery and development. The results showed that AAHPE is a potential inhibitor of both α-amylase and α-glucosidase, with IC50 values of 46.50 ± 6.17 (µg/mL) and 37.81 ± 5.15 (µg/mL), respectively. This is demonstrated by a significant increase in the glucose uptake activity percentage in a concentration-dependent manner compared to the control, with the highest AAHPE concentration of 75 µg/mL of glucose uptake activity being higher than metformin, a standard anti-diabetic drug, in the insulin-resistant HepG2 cell line. The molecular docking results displayed that the constituents strongly bind α-amylase and α-glucosidase while achieving better binding affinities that ranged from ΔG = -7.2 to -9.6 kcal/mol (compared with acarbose ΔG = -6.1 kcal/mol) for α-amylase, and ΔG = -7.3 to -9.0 kcal/mol (compared with acarbose ΔG = -6.3 kcal/mol) for α-glucosidase. This study revealed the potential use of the H. petiolare plant extract and its phytochemicals, which could be explored to develop potent and safe α-amylase and α-glucosidase inhibitors to treat postprandial glycemic levels in diabetic patients.
    MeSH terms: Acetone; alpha-Amylases/antagonists & inhibitors; alpha-Amylases/chemistry; alpha-Glucosidases/chemistry; Cell Line; Chromatography, Liquid; Diabetes Mellitus/drug therapy; Dose-Response Relationship, Drug; Enzyme Activation; Humans; Hypoglycemic Agents/pharmacology*; Hypoglycemic Agents/chemistry*; Plant Extracts/pharmacology; Plant Extracts/chemistry*; Mass Spectrometry; Helichrysum/chemistry*; Drug Discovery; Molecular Dynamics Simulation*; Molecular Docking Simulation*; Phytochemicals/pharmacology; Phytochemicals/chemistry*; Glycoside Hydrolase Inhibitors/pharmacology; Glycoside Hydrolase Inhibitors/chemistry
  18. Azmi NN, Mahyudin NA, Wan Omar WH, Mahmud Ab Rashid NK, Ishak CF, Abdullah AH, et al.
    Molecules, 2021 Dec 28;27(1).
    PMID: 35011396 DOI: 10.3390/molecules27010170
    Natural clays have recently been proven to possess antibacterial properties. Effective natural antimicrobial agents are needed to combat bacterial contamination on food contact surfaces, which are increasingly more prevalent in the food chain. This study sought to determine the antibacterial activity of clays against the food-borne pathogens Salmonella typhimurium ATCC 14028 and Staphylococcus aureus ATCC 13565. Soils were processed to yield leachates and suspensions from untreated and treated clays. Soil particle size, pH, cation-exchange capacity, metal composition and mineralogy were characterized. Antibacterial screening was performed on six Malaysian soils via the disc diffusion method. In addition, a time-kill assay was conducted on selected antibacterial clays after 6 h of exposure. The screening revealed that Munchong and Carey clays significantly inhibit Salmonella typhimurium (11.00 ± 0.71 mm) and S. aureus (7.63 ± 0.48 mm), respectively. Treated Carey clay leachate and suspension completely kill Salmonella typhimurium, while S. aureus viability is reduced (2 to 3 log10). The untreated Carey and all Munchong clays proved ineffective as antibacterials. XRD analysis confirmed the presence of pyrite and magnetite. Treated Carey clays had a higher soluble metal content compared to Munchong; namely Al (92.63 ± 2.18 mg/L), Fe (65.69 ± 3.09 mg/L) and Mg (88.48 ± 2.29 mg/L). Our results suggest that metal ion toxicity is responsible for the antibacterial activity of these clays.
    MeSH terms: Anti-Bacterial Agents/pharmacology*; Anti-Bacterial Agents/chemistry*; Cations/chemistry; Hydrogen-Ion Concentration; Microbial Sensitivity Tests; Particle Size; Salmonella typhimurium/drug effects*; Soil/chemistry*; Staphylococcus aureus/drug effects*
  19. Mahleyuddin NN, Moshawih S, Ming LC, Zulkifly HH, Kifli N, Loy MJ, et al.
    Molecules, 2021 Dec 30;27(1).
    PMID: 35011441 DOI: 10.3390/molecules27010209
    Coriandrum sativum (C. sativum), belonging to the Apiaceae (Umbelliferae) family, is widely recognized for its uses in culinary and traditional medicine. C. sativum contains various phytochemicals such as polyphenols, vitamins, and many phytosterols, which account for its properties including anticancer, anti-inflammatory, antidiabetic, and analgesic effects. The cardiovascular benefits of C. sativum have not been summarized before, hence this review aims to further evaluate and discuss its effectiveness in cardiovascular diseases, according to the recent literature. An electronic search for literature was carried out using the following databases: PubMed, Scopus, Google Scholar, preprint platforms, and the Cochrane Database of Systematic Reviews. Articles were gathered from the inception of the database until August 2021. Moreover, the traditional uses and phytochemistry of coriander were surveyed in the original resources and summarized. As a result, most of the studies that cover cardiovascular benefits and fulfilled the eligibility criteria were in vivo, while only a few were in vitro and clinical studies. In conclusion, C. sativum can be deemed a functional food due to its wide range of cardiovascular benefits such as antihypertensive, anti-atherogenic, antiarrhythmic, hypolipidemic as well as cardioprotective effects.
    MeSH terms: Animals; Cardiovascular System/drug effects*; Humans; Medicine, Traditional; Plant Extracts/pharmacology; Plant Extracts/chemistry; Plants, Medicinal/chemistry; Structure-Activity Relationship; Coriandrum/classification; Coriandrum/chemistry*; Functional Food; Health Impact Assessment; Phytochemicals/pharmacology*; Phytochemicals/chemistry*
  20. Shah MKA, Azad AK, Nawaz A, Ullah S, Latif MS, Rahman H, et al.
    Polymers (Basel), 2021 Dec 30;14(1).
    PMID: 35012154 DOI: 10.3390/polym14010135
    This study aims to develop chitosan-based voriconazole nanoparticles (NPs) using spray-drying technique. The effect of surfactants and polymers on the physicochemical properties, in vitro release, and permeation of NPs was investigated. The prepared NPs containing various surfactants and polymers (e.g., Tween 20 (T20), Tween 80 (T80), sodium lauryl sulfate (SLS), propylene glycol (PG), and Polyethylene glycol-4000 (PEG-4000)) were physiochemically evaluated for size, zeta potential, drug content, percent entrapment efficiency, in vitro release, and permeation across rats' skin. A Franz diffusion cell was used for evaluating the in vitro release and permeation profile. The voriconazole-loaded NPs were investigated for antifungal activity against Candida albicans (C. albicans). The prepared NPs were in the nano range (i.e., 160-500 nm) and positively charged. Images taken by a scanning electron microscope showed that all prepared NPs were spherical and smooth. The drug content of NPs ranged from 75% to 90%. Nanoparticle formulations exhibited a good in vitro release profile and transport voriconazole across the rat's skin in a slow control release manner. The NPs containing SLS, T80, and PG exhibited the best penetration and skin retention profile. In addition, the formulation exhibited a potential antifungal effect against C. albicans. It was concluded that the development of chitosan NPs has a great potential for the topical delivery of voriconazole against fungal infection.
External Links