SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10668-022-02633-8.
METHODS: Genome-wide analysis of remission (n remit = 1852, n nonremit = 3299) and percentage improvement (n = 5218) was performed. Single nucleotide polymorphism-based heritability was estimated using genome-wide complex trait analysis. Genetic covariance with eight mental health phenotypes was estimated using polygenic scores/AVENGEME. Out-of-sample prediction of antidepressant response polygenic scores was assessed. Gene-level association analysis was performed using MAGMA and transcriptome-wide association study. Tissue, pathway, and drug binding enrichment were estimated using MAGMA.
RESULTS: Neither genome-wide association study identified genome-wide significant associations. Single nucleotide polymorphism-based heritability was significantly different from zero for remission (h 2 = 0.132, SE = 0.056) but not for percentage improvement (h 2 = -0.018, SE = 0.032). Better antidepressant response was negatively associated with genetic risk for schizophrenia and positively associated with genetic propensity for educational attainment. Leave-one-out validation of antidepressant response polygenic scores demonstrated significant evidence of out-of-sample prediction, though results varied in external cohorts. Gene-based analyses identified ETV4 and DHX8 as significantly associated with antidepressant response.
CONCLUSIONS: This study demonstrates that antidepressant response is influenced by common genetic variation, has a genetic overlap schizophrenia and educational attainment, and provides a useful resource for future research. Larger sample sizes are required to attain the potential of genetics for understanding and predicting antidepressant response.
METHODS: We conducted a cross-sectional retrospective study of 171 stroke centers from 49 countries. We recorded COVID-19 admission volumes, CVT hospitalization, and CVT in-hospital mortality from January 1, 2019, to May 31, 2021. CVT diagnoses were identified by International Classification of Disease-10 (ICD-10) codes or stroke databases. We additionally sought to compare the same metrics in the first 5 months of 2021 compared to the corresponding months in 2019 and 2020 (ClinicalTrials.gov Identifier: NCT04934020).
RESULTS: There were 2,313 CVT admissions across the 1-year pre-pandemic (2019) and pandemic year (2020); no differences in CVT volume or CVT mortality were observed. During the first 5 months of 2021, there was an increase in CVT volumes compared to 2019 (27.5%; 95% confidence interval [CI], 24.2 to 32.0; P<0.0001) and 2020 (41.4%; 95% CI, 37.0 to 46.0; P<0.0001). A COVID-19 diagnosis was present in 7.6% (132/1,738) of CVT hospitalizations. CVT was present in 0.04% (103/292,080) of COVID-19 hospitalizations. During the first pandemic year, CVT mortality was higher in patients who were COVID positive compared to COVID negative patients (8/53 [15.0%] vs. 41/910 [4.5%], P=0.004). There was an increase in CVT mortality during the first 5 months of pandemic years 2020 and 2021 compared to the first 5 months of the pre-pandemic year 2019 (2019 vs. 2020: 2.26% vs. 4.74%, P=0.05; 2019 vs. 2021: 2.26% vs. 4.99%, P=0.03). In the first 5 months of 2021, there were 26 cases of vaccine-induced immune thrombotic thrombocytopenia (VITT), resulting in six deaths.
CONCLUSIONS: During the 1st year of the COVID-19 pandemic, CVT hospitalization volume and CVT in-hospital mortality did not change compared to the prior year. COVID-19 diagnosis was associated with higher CVT in-hospital mortality. During the first 5 months of 2021, there was an increase in CVT hospitalization volume and increase in CVT-related mortality, partially attributable to VITT.
METHODS: Twenty-three male subjects walked on a customized platform with four different surface inclinations (i.e., 0, 5, 7.5 and 10°) with inclined and declined directions. The motion of the ten reflective markers was captured using Qualysis motion capture system (Qualysis, Gothenburg, Sweden) and exported to a visual three-dimensional (3D) software (C-motion, Germantown, USA) in order to analyze the GRF, JRF and PFS.
RESULTS: The results found that the peak vertical GRF is almost consistent for 0 and 5° inclination slope but started to decrease at 7.5° onwards during decline walking. The most affected JRF was found on knee at medial-lateral direction even as low as 5 to 10° inclination for both walking conditions. Furthermore, the findings also show that the JRF of lower extremity was more affected during declined walking compared to inclined walking based on the number of significant differences observed in each inclination angle. The PFS was found increased with the increase of surface inclination.
CONCLUSIONS: The findings could provide a new insight on the relationship of joint reaction forces and strain parameter in response to the incline and decline walking. It would benefit in providing a better precaution that should be considered during hiking activity, especially in medial-lateral direction in order to prevent injury or fall risk.
METHODS: A three-dimensional finite element model of two-piece threaded dental implant with internal hexagonal connection and mandibular bone block was constructed. Response surface method through face-centred central composite design was applied to examine the influence of two independent factors variables using three levels. The analysis model was fitted to a second-order polynomial equation to determine the response values.
RESULTS: The results showed that the implant stiffness was more effective than the horizontal load value in increasing the stress and strain energy density transfers. The interaction between both factors was significant in decreasing the likelihood of bone resorption. Decreasing the implant stiffness and horizontal load value led to the increased stress transfer and unexpected decrease in the strain energy density, except at the minimum level of the horizontal load. The increase in the implant stiffness and horizontal load value (up to medium level) have increased the strain energy transfer to the bone.
CONCLUSIONS: The stress and strain energy density were transferred distinctively at the bone-implant interface. The role of both implant stiffness and parafunctional loading is important and should be highlighted in the preoperative treatment planning and design of dental implant.