Affiliations 

  • 1 Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States of America
  • 2 Department of Experimental and Systems Pharmacology, Washington State University, Spokane, Washington, United States of America
PLoS One, 2015;10(5):e0127569.
PMID: 25978397 DOI: 10.1371/journal.pone.0127569

Abstract

Insect resistance to toxins exerts not only a great impact on our economy, but also on the ecology of many species. Resistance to one toxin is often associated with cross-resistance to other, sometimes unrelated, chemicals. In this study, we investigated mushroom toxin resistance in the fruit fly Drosophila melanogaster (Meigen). This fruit fly species does not feed on mushrooms in nature and may thus have evolved cross-resistance to α-amanitin, the principal toxin of deadly poisonous mushrooms, due to previous pesticide exposure. The three Asian D. melanogaster stocks used in this study, Ama-KTT, Ama-MI, and Ama-KLM, acquired α-amanitin resistance at least five decades ago in their natural habitats in Taiwan, India, and Malaysia, respectively. Here we show that all three stocks have not lost the resistance phenotype despite the absence of selective pressure over the past half century. In response to α-amanitin in the larval food, several signs of developmental retardation become apparent in a concentration-dependent manner: higher pre-adult mortality, prolonged larva-to-adult developmental time, decreased adult body size, and reduced adult longevity. In contrast, female fecundity nearly doubles in response to higher α-amanitin concentrations. Our results suggest that α-amanitin resistance has no fitness cost, which could explain why the resistance has persisted in all three stocks over the past five decades. If pesticides caused α-amanitin resistance in D. melanogaster, their use may go far beyond their intended effects and have long-lasting effects on ecosystems.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.